IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v222y2019icp336-345.html
   My bibliography  Save this article

Roles of methyl jasmonate in improving growth and yield of two varieties of bread wheat (Triticum aestivum) under different irrigation regimes

Author

Listed:
  • Javadipour, Zahra
  • Balouchi, Hamidreza
  • Movahhedi Dehnavi, Mohsen
  • Yadavi, Alireza

Abstract

Drought stress due to its stage of occurrence is one of the factors affecting wheat yield, and jasmonates are plant growth regulators that play an important role in increasing the resistance of plants to environmental stresses such as drought stress. Therefore, in order to study the effect of spraying different concentrations of methyl jasmonate on water productivity, yield and its components of two wheat cultivars under different irrigation regimes, a split factorial experiment was conducted based on a randomized complete block design with three replications in two crop years (2015–2017). In this experiment, different irrigation regimes, including normal irrigation (control), irrigation cut off from the booting and milk stage as the main factor, and two wheat cultivars and various concentrations of methyl jasmonate in four levels of 0, 50, 100, and 150 μM were investigated as factorial in subfactor. The results showed that use of 100 μM methyl jasmonate increase growth period and a number of days until plant physiological maturity. Under drought stress conditions, the number of grains per spike, weight of one thousand seed, grain yield, and harvest index are decreased in every two years of experiment. Also, using 100 μM methyl jasmonate lead to increase these traits by 22.2, 14.4, 8.5, and 11.4%, respectively in Pishtaz cultivar, and 10.3, 10.7, 8.5, and 11.2%, respectively in the Sirvan cultivar compared to the control group. The highest water productivity at each of the three levels of irrigation was related to the concentration of 100 μM methyl jasmonate. According to the results, although drought stress reduced yield and its components, methyl jasmonate was able to compensate somewhat (10%) for the reduced yield due to drought stress. The irrigation cut off at the grain milking stage can be beneficial with increasing water productivity in managing this valuable resource. Also, the use of 100 μM jasmonate in these conditions is recommended as a practical way to increase tolerance to drought stress conditions and improve the growth and yield of wheat.

Suggested Citation

  • Javadipour, Zahra & Balouchi, Hamidreza & Movahhedi Dehnavi, Mohsen & Yadavi, Alireza, 2019. "Roles of methyl jasmonate in improving growth and yield of two varieties of bread wheat (Triticum aestivum) under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 222(C), pages 336-345.
  • Handle: RePEc:eee:agiwat:v:222:y:2019:i:c:p:336-345
    DOI: 10.1016/j.agwat.2019.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419300022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faramarzi, Monireh & Yang, Hong & Schulin, Rainer & Abbaspour, Karim C., 2010. "Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production," Agricultural Water Management, Elsevier, vol. 97(11), pages 1861-1875, November.
    2. Unknown, 2009. "Wheat Facts and Futures 2009," Facts and Trends/Overview and Outlook 56366, CIMMYT: International Maize and Wheat Improvement Center.
    3. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    2. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    4. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    5. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    6. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    7. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    8. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Mirela Matković Stojšin & Sofija Petrović & Borislav Banjac & Veselinka Zečević & Svetlana Roljević Nikolić & Helena Majstorović & Radiša Đorđević & Desimir Knežević, 2022. "Assessment of Genotype Stress Tolerance as an Effective Way to Sustain Wheat Production under Salinity Stress Conditions," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    10. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    11. Iqbal, M. Anjum & Bodner, G. & Heng, L.K. & Eitzinger, J. & Hassan, A., 2010. "Assessing yield optimization and water reduction potential for summer-sown and spring-sown maize in Pakistan," Agricultural Water Management, Elsevier, vol. 97(5), pages 731-737, May.
    12. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    13. Oker, Tobias E. & Kisekka, Isaya & Sheshukov, Aleksey Y. & Aguilar, Jonathan & Rogers, Danny H., 2018. "Evaluation of maize production under mobile drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 11-21.
    14. Zhang, Xiying & Chen, Suying & Sun, Hongyong & Shao, Liwei & Wang, Yanzhe, 2011. "Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades," Agricultural Water Management, Elsevier, vol. 98(6), pages 1097-1104, April.
    15. World Bank, 2006. "Reengaging in Agricultural Water Management: Challenges and Options," World Bank Publications - Books, The World Bank Group, number 6957.
    16. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    17. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    18. Dennis Wichelns, 2015. "Water productivity and water footprints are not helpful in determining optimal water allocations or efficient management strategies," Water International, Taylor & Francis Journals, vol. 40(7), pages 1059-1070, November.
    19. Cristian Dal Cortivo & Giuseppe Barion & Manuel Ferrari & Giovanna Visioli & Lucia Dramis & Anna Panozzo & Teofilo Vamerali, 2018. "Effects of Field Inoculation with VAM and Bacteria Consortia on Root Growth and Nutrients Uptake in Common Wheat," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    20. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:222:y:2019:i:c:p:336-345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.