IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v219y2019icp1-11.html
   My bibliography  Save this article

Deficit irrigation strategies to improve winter wheat productivity and regulating root growth under different planting patterns

Author

Listed:
  • Ali, Shahzad
  • Xu, Yueyue
  • Ma, Xiangcheng
  • Ahmad, Irshad
  • Manzoor,
  • Jia, Qianmin
  • Akmal, Muhammad
  • Hussain, Zahid
  • Arif, Muhammad
  • Cai, Tie
  • Zhang, Jiahua
  • Jia, Zhikuan

Abstract

Soil moisture status and knowledge of rooting systems are essential for improving winter wheat productivity in the semiarid areas. The ridge-furrow rainfall harvesting (RI) system in combination with deficit irrigation is the key strategy for improving winter wheat productivity. Therefore, a research trail we conducted during 2015–16 and 2016–17, on RI system where the amount of irrigation was decreased by half due to the rainfall harvesting, than that of traditional boarder irrigation (BI). The following two planting patterns were used (1) the RI system with (75, 37, 18, 0 mm) irrigation levels, and (2) BI planting pattern with (150, 75, 37, 0 mm) deficit irrigation levels. Results showed that under the RI75 treatment soil water and soil respiration in topsoil increase significantly ; whereas there was reduction in ET rate that was (44.2%) and soil temperature; thus, therefore and the morphology of winter wheat rooting system owing to significant improvement in grain yield (14.6%) and WUE (64.8%) as compared to BI150 treatment. This treatment improved wheat root tissue density (4.9%), root length ratio (16.3%), root mass ratio (8.3%) and root fineness (9.5%) as compared with conventional border irrigation. The RI75 treatment produced significantly greater RWD, RLD, and RSD at 10–40 cm soil depth when compared with BI150 treatment. The RI system increased the root bleeding sap rate and root dry weight as compared to BI planting pattern. Therefore, the RI system combined with 75 mm deficit irrigation can be an efficient water saving strategy in semi-arid regions due to increased soil moisture across the rooting zones, a resulting in higher WUE and wheat production.

Suggested Citation

  • Ali, Shahzad & Xu, Yueyue & Ma, Xiangcheng & Ahmad, Irshad & Manzoor, & Jia, Qianmin & Akmal, Muhammad & Hussain, Zahid & Arif, Muhammad & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "Deficit irrigation strategies to improve winter wheat productivity and regulating root growth under different planting patterns," Agricultural Water Management, Elsevier, vol. 219(C), pages 1-11.
  • Handle: RePEc:eee:agiwat:v:219:y:2019:i:c:p:1-11
    DOI: 10.1016/j.agwat.2019.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418309211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chakraborty, Debashis & Nagarajan, Shantha & Aggarwal, Pramila & Gupta, V.K. & Tomar, R.K. & Garg, R.N. & Sahoo, R.N. & Sarkar, A. & Chopra, U.K. & Sarma, K.S. Sundara & Kalra, N., 2008. "Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 95(12), pages 1323-1334, December.
    2. Li, Quanqi & Dong, Baodi & Qiao, Yunzhou & Liu, Mengyu & Zhang, Jiwang, 2010. "Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China," Agricultural Water Management, Elsevier, vol. 97(10), pages 1676-1682, October.
    3. Li, Xiao-Yan & Gong, Jia-Dong & Gao, Qian-Zhao & Li, Feng-Rui, 2001. "Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions," Agricultural Water Management, Elsevier, vol. 50(3), pages 173-183, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao, Fengli & Ding, Risheng & Du, Taisheng & Kang, Jian & Tong, Ling & Gao, Jia & Shao, Jie, 2024. "Multi-growth stage regulated deficit irrigation improves maize water productivity in an arid region of China," Agricultural Water Management, Elsevier, vol. 297(C).
    2. Bhattarai, Bishwoyog & Singh, Sukhbir & West, Charles P. & Ritchie, Glen L. & Trostle, Calvin L., 2020. "Water Depletion Pattern and Water Use Efficiency of Forage Sorghum, Pearl millet, and Corn Under Water Limiting Condition," Agricultural Water Management, Elsevier, vol. 238(C).
    3. Asmamaw, Desale Kidane & Janssens, Pieter & Dessie, Mekete & Tilahun, Seifu A. & Adgo, Enyew & Nyssen, Jan & Walraevens, Kristine & Assaye, Habtamu & Yenehun, Alemu & Nigate, Fenta & Cornelis, Wim M., 2023. "Effect of deficit irrigation and soil fertility management on wheat production and water productivity in the Upper Blue Nile Basin, Ethiopia," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Peng, Manman & Han, Wenting & Li, Chaoqun & Li, Guang & Yao, Xiaomin & Zhang, Mengfei, 2021. "Diurnal and seasonal CO2 exchange and yield of maize cropland under different irrigation treatments in semiarid Inner Mongolia," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Zhao, Guoqing & Mu, Yan & Wang, Yanhui & Wang, Li, 2022. "Magnetization and oxidation of irrigation water to improve winter wheat (Triticum aestivum L.) production and water-use efficiency," Agricultural Water Management, Elsevier, vol. 259(C).
    6. Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Feng, Hao & Ding, Dianyuan & Siddique, Kadambot H.M., 2023. "Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    7. Xin Zhang & Jianheng Zhang & Jiaxin Xue & Guiyan Wang, 2023. "Improving Wheat Yield and Water-Use Efficiency by Optimizing Irrigations in Northern China," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    8. Singh, Manpreet & Singh, Sukhbir & Deb, Sanjit & Ritchie, Glen, 2023. "Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application," Agricultural Water Management, Elsevier, vol. 279(C).
    9. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng, 2022. "Quantifying grain yield, protein, nutrient uptake and utilization of winter wheat under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 261(C).
    10. Bhattarai, Bishwoyog & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Saini, Rupinder & Auld, Dick, 2020. "Spring safflower water use patterns in response to preseason and in-season irrigation applications," Agricultural Water Management, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Ullah, Hidayat & Alam, Mukhtar & Adnan, Muhammad & Daur, Ihsanullah & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikua, 2018. "Tillage and deficit irrigation strategies to improve winter wheat production through regulating root development under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 209(C), pages 44-54.
    2. Zhang, Tiejun & Ali, Shahzad & Xi, Yueling & Ma, Xingchang & Sun, Lefang, 2022. "Cultivation models and mulching strategies to improve root-bleeding sap, nutrients uptake and wheat production in semi-arid regions," Agricultural Water Management, Elsevier, vol. 260(C).
    3. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Araya, A. & Stroosnijder, L., 2010. "Effects of tied ridges and mulch on barley (Hordeum vulgare) rainwater use efficiency and production in Northern Ethiopia," Agricultural Water Management, Elsevier, vol. 97(6), pages 841-847, June.
    5. Jiansheng Ye & Changan Liu, 2012. "Suitability of Mulch and Ridge-furrow Techniques for Maize across the Precipitation Gradient on the Chinese Loess Plateau," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 4(10), pages 182-182, August.
    6. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
    7. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    8. Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
    9. Liu, Junming & Si, Zhuanyun & Wu, Lifeng & Shen, Xiaojun & Gao, Yang & Duan, Aiwang, 2023. "High-low seedbed cultivation drives the efficient utilization of key production resources and the improvement of wheat productivity in the North China Plain," Agricultural Water Management, Elsevier, vol. 285(C).
    10. Wang, Hao & Xu, Ranran & Li, Yang & Yang, Liye & Shi, Wei & Liu, Yongjie & Chang, Shenghua & Hou, Fujiang & Jia, Qianmin, 2019. "Enhance root-bleeding sap flow and root lodging resistance of maize under a combination of nitrogen strategies and farming practices," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    11. Wang, Huan & Fan, Jun & Fu, Wei & Du, Mengge & Zhou, Gu & Zhou, Mingxing & Hao, Mingde & Shao, Ming'an, 2022. "Good harvests of winter wheat from stored soil water and improved temperature during fallow period by plastic film mulching," Agricultural Water Management, Elsevier, vol. 274(C).
    12. Hu, Yajin & Ma, Penghui & Wu, Shufang & Sun, Benhua & Feng, Hao & Pan, Xiaolian & Zhang, Binbin & Chen, Guangjie & Duan, Chenxiao & Lei, Qi & Siddique, Kadambot H.M. & Liu, Boyang, 2020. "Spatial-temporal distribution of winter wheat (Triticum aestivum L.) roots and water use efficiency under ridge–furrow dual mulching," Agricultural Water Management, Elsevier, vol. 240(C).
    13. Grum, Berhane & Assefa, Dereje & Hessel, Rudi & Woldearegay, Kifle & Ritsema, Coen J. & Aregawi, Berihun & Geissen, Violette, 2017. "Improving on-site water availability by combining in-situ water harvesting techniques in semi-arid Northern Ethiopia," Agricultural Water Management, Elsevier, vol. 193(C), pages 153-162.
    14. Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    15. Xiaoyi Jiang & Dandong Mao & Min Zhu & Xingchun Wang & Chunyan Li & Xinkai Zhu & Wenshan Guo & Jinfeng Ding, 2022. "Evaluating the Waterlogging Tolerance of Wheat Cultivars during the Early Growth Stage Using the Comprehensive Evaluation Value and Digital Image Analysis," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
    16. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    17. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    18. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    19. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    20. Razmavaran, Mohammad Hadi & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2024. "Water footprint and production of rain-fed saffron under different planting methods with ridge plastic mulch and pre-flowering irrigation in a semi-arid region," Agricultural Water Management, Elsevier, vol. 291(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:219:y:2019:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.