IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v217y2019icp212-225.html
   My bibliography  Save this article

Adaptation strategies to cope with low, high and untimely floods: Lessons from the Gash spate irrigation system, Sudan

Author

Listed:
  • Fadul, E.
  • Masih, I.
  • De Fraiture, C.

Abstract

In arid areas, water diverted from highly uncertain flash floods is often the only source of water for crop production. Stakeholders in spate irrigation systems have developed numerous measures to cope with uncertain water supply related to low, high and untimely floods. This research evaluates the effectiveness of these measures using the MULINO Decision Support System (mDSS4) tool which is based on the Driving force-Pressure-State-Impact-Response (DPSIR) framework. Using data from interviews with 101 randomly selected farmers, 17 water user associations (WUAs), and 7 system water managers in the Gash spate irrigation system in Sudan, we compare the effectiveness with the rate of adoption. The results reveal the most effective measures are 1) pre-flood preparedness, 2) risk sharing measures through water and land management during and after flood by WUAs, 3) crop management by farmers; and 4) flexibility in operation by water managers. Unfortunately, the most effective measures are not the most adopted ones. The level of adoption is primarily related to the capacity of the farmers, WUAs and water managers to implement the measures without outside support. Generally, measures taken by downstream farmers are less effective than those adopted by upstream farmers due to weak institutional arrangements and lack of adequate resources. Supporting farmers, WUAs and water managers for a wider adoption of the existing effective measures will greatly improve irrigation performance and hence food security in the study area.

Suggested Citation

  • Fadul, E. & Masih, I. & De Fraiture, C., 2019. "Adaptation strategies to cope with low, high and untimely floods: Lessons from the Gash spate irrigation system, Sudan," Agricultural Water Management, Elsevier, vol. 217(C), pages 212-225.
  • Handle: RePEc:eee:agiwat:v:217:y:2019:i:c:p:212-225
    DOI: 10.1016/j.agwat.2019.02.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418310229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.02.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ortega-Reig, Mar & Palau-Salvador, Guillermo & Cascant i Sempere, Maria Josep & Benitez-Buelga, Javier & Badiella, David & Trawick, Paul, 2014. "The integrated use of surface, ground and recycled waste water in adapting to drought in the traditional irrigation system of Valencia," Agricultural Water Management, Elsevier, vol. 133(C), pages 55-64.
    2. Giupponi, C & Mysiak, J & Fassio, A & Cogan, V, 2004. "MULINO-DSS: a computer tool for sustainable use of water resources at the catchment scale," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 13-24.
    3. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    4. Quiroga, Sonia & Iglesias, Ana, 2009. "A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain," Agricultural Systems, Elsevier, vol. 101(1-2), pages 91-100, June.
    5. Komakech, Hans Charles & Mul, Marloes L. & van der Zaag, Pieter & Rwehumbiza, Filbert B.R., 2011. "Water allocation and management in an emerging spate irrigation system in Makanya catchment, Tanzania," Agricultural Water Management, Elsevier, vol. 98(11), pages 1719-1726, September.
    6. Lee A. Ngirazie & Ageel I. Bushara & Jerry W. Knox, 2015. "Assessing the performance of water user associations in the Gash Irrigation Project, Sudan," Water International, Taylor & Francis Journals, vol. 40(4), pages 635-646, July.
    7. Shivakoti, Ganesh P. & Thapa, Surendra B., 2005. "Farmers' perceptions of participation and institutional effectiveness in the management of mid-hill watersheds in Nepal," Environment and Development Economics, Cambridge University Press, vol. 10(5), pages 665-687, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamal Abdelrahim Mohamed Shuka & Ke Wang & Ghali Abdullahi Abubakar & Tianyue Xu, 2024. "Impact of Structural and Non-Structural Measures on the Risk of Flash Floods in Arid and Semi-Arid Regions: A Case Study of the Gash River, Kassala, Eastern Sudan," Sustainability, MDPI, vol. 16(5), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorite, I.J. & Gabaldón-Leal, C. & Ruiz-Ramos, M. & Belaj, A. & de la Rosa, R. & León, L. & Santos, C., 2018. "Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 247-261.
    2. Ali Sardar Shahraki & Thomas Panagopoulos & Hajar Esna Ashari & Ommolbanin Bazrafshan, 2023. "Relationship between Indigenous Knowledge Development in Agriculture and the Sustainability of Water Resources," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    3. Hamamouche, Meriem Farah & Kuper, Marcel & Riaux, Jeanne & Leduc, Christian, 2017. "Conjunctive use of surface and ground water resources in a community-managed irrigation system — The case of the Sidi Okba palm grove in the Algerian Sahara," Agricultural Water Management, Elsevier, vol. 193(C), pages 116-130.
    4. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    5. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    6. Romero, Pascual & Botía, Pablo & del Amor, Francisco M. & Gil-Muñoz, Rocío & Flores, Pilar & Navarro, Josefa María, 2019. "Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting condi," Agricultural Water Management, Elsevier, vol. 225(C).
    7. Nazemi, Neda & Foley, Rider W. & Louis, Garrick & Keeler, Lauren Withycombe, 2020. "Divergent agricultural water governance scenarios: The case of Zayanderud basin, Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    8. Nikolaos Gourgouletis & Marianna Gkavrou & Evangelos Baltas, 2023. "Comparison of Empirical ETo Relationships with ERA5-Land and In Situ Data in Greece," Geographies, MDPI, vol. 3(3), pages 1-23, August.
    9. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    10. Juan J. Cubillas & María I. Ramos & Juan M. Jurado & Francisco R. Feito, 2022. "A Machine Learning Model for Early Prediction of Crop Yield, Nested in a Web Application in the Cloud: A Case Study in an Olive Grove in Southern Spain," Agriculture, MDPI, vol. 12(9), pages 1-26, August.
    11. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    12. Tran, Thong Anh & Nguyen, Tri Huu & Vo, Thang Tat, 2019. "Adaptation to flood and salinity environments in the Vietnamese Mekong Delta: Empirical analysis of farmer-led innovations," Agricultural Water Management, Elsevier, vol. 216(C), pages 89-97.
    13. Zagaria, Cecilia & Schulp, Catharina J.E. & Zavalloni, Matteo & Viaggi, Davide & Verburg, Peter H., 2021. "Modelling transformational adaptation to climate change among crop farming systems in Romagna, Italy," Agricultural Systems, Elsevier, vol. 188(C).
    14. Tiruye, A. E. & Belay, S. A. & Schmitter, Petra & Tegegne, Desalegn & Zimale, F. A. & Tilahun, S. A., 2023. "Yield, water productivity and nutrient balances under different water management technologies of irrigated wheat in Ethiopia," Papers published in Journals (Open Access), International Water Management Institute, pages 1-1(12):000.
    15. Eun-Sung Chung & Won-Pyo Hong & Kil Lee & Steven Burian, 2011. "Integrated Use of a Continuous Simulation Model and Multi-Attribute Decision-Making for Ranking Urban Watershed Management Alternatives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 641-659, January.
    16. Leroy, David, 2023. "An empirical assessment of the institutional performance of community-based water management in a large-scale irrigation system in southern Mexico," Agricultural Water Management, Elsevier, vol. 276(C).
    17. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    18. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    19. Liu, Ziqiang & Jia, Guodong & Yu, Xinxiao, 2020. "Water uptake and WUE of Apple tree-Corn Agroforestry in the Loess hilly region of China," Agricultural Water Management, Elsevier, vol. 234(C).
    20. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:217:y:2019:i:c:p:212-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.