IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v216y2019icp44-59.html
   My bibliography  Save this article

Evolution of roots to improve water and nitrogen use efficiency in maize elite inbred lines released during different decades in China

Author

Listed:
  • Wu, Yang
  • Wang, Lichun
  • Bian, Shaofeng
  • Liu, Zhiming
  • Wang, Yongjun
  • Lv, Yanjie
  • Cao, Yujun
  • Yao, Fanyun
  • Li, Chunxia
  • Wei, Wenwen

Abstract

The evolution of canopy traits related to maize yield increases has been well documented, but the changes in the root system over decades and their relationships with the water use efficiency (WUE) and nitrogen (N) use efficiency (NUE) require further investigation. In this study, we analyzed the morphological and physiological characteristics of the roots, as well as the water-N uptake, WUE, and NUE under low water/N (LW/LN) and high water/N (HW/HN) supply levels in 11 elite inbred maize lines released in China during the 1960s, 1980s, and 2000s. The results showed that yield improvement in the inbred lines from the 1960s to the 1980s (61–109%) was greater than that in those from the 1980s to the 2000s (6–17%), and the resistance to drought and low N also exhibited a significant linear increase over the decades. The utilization of water and N by the inbred lines evolved efficiently and economically, especially in stressful environments. The improved WUE of modern inbred lines was demonstrated by the higher yield and lower evapotranspiration. The NUE defined as the grain yield obtained per unit of N in plants increased in a linear manner over the three decades, and it was accompanied by higher N accumulation in the grains and greater N translocation efficiency in the roots. However, the agronomic N use efficiency improved from the 1960s to the 1980s, but then decreased from the 1980s to the 2000s. The modern inbred lines tended to produce less redundant roots in the top (0–20 cm) soil layer, whereas root development was enhanced in the deeper soil layer. The morphological properties of the roots (dry weight, length, volume, surface area, weight density, and length density) tended to increase from the 1960s to the 1980s but then decreased from the 1980s to the 2000s, and they had significant quadratic relationships with the yield, WUE, and NUE. By contrast, water/N amount absorbed per unit root volume, the physiological properties related to the root absorption area, root activity improved over the decades, where the physiological properties had positive linear relationships with the yield, WUE, and NUE. Thus, we conclude that the maize roots evolved alongside higher yields and greater tolerance to drought and low N environments. The improved WUE and NUE in the modern inbred lines were associated with the greater physiological absorption capacity of the roots rather than larger root size in normal or stressful environments.

Suggested Citation

  • Wu, Yang & Wang, Lichun & Bian, Shaofeng & Liu, Zhiming & Wang, Yongjun & Lv, Yanjie & Cao, Yujun & Yao, Fanyun & Li, Chunxia & Wei, Wenwen, 2019. "Evolution of roots to improve water and nitrogen use efficiency in maize elite inbred lines released during different decades in China," Agricultural Water Management, Elsevier, vol. 216(C), pages 44-59.
  • Handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:44-59
    DOI: 10.1016/j.agwat.2019.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418309120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo, 2014. "Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop," Agricultural Water Management, Elsevier, vol. 146(C), pages 280-296.
    2. Mudenda, Ethel Muleya & Phiri, Elijah & Chabala, Lydia M. & Sichingabula, Henry M., 2017. "Water Use Efficiency of Maize Varieties under Rain-Fed Conditions in Zambia," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 6(1), February.
    3. Passioura, J. B., 1983. "Roots and drought resistance," Agricultural Water Management, Elsevier, vol. 7(1-3), pages 265-280, September.
    4. Bertrand Hirel & Thierry Tétu & Peter J. Lea & Frédéric Dubois, 2011. "Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture," Sustainability, MDPI, vol. 3(9), pages 1-34, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongfa Li & Julin Gao & Yuanyuan Li & Shaobo Yu & Zhigang Wang, 2022. "Heterosis for Nitrogen Use Efficiency of Maize Hybrids Enhanced over Decades in China," Agriculture, MDPI, vol. 12(6), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Rui-Xian & Zhou, Zhi-Guo & Guo, Wen-Qi & Chen, Bing-Lin & Oosterhuis, Derrick M., 2008. "Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants," Agricultural Water Management, Elsevier, vol. 95(11), pages 1261-1270, November.
    2. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    3. Festo Richard Silungwe & Frieder Graef & Sonoko Dorothea Bellingrath-Kimura & Emmanuel A Chilagane & Siza Donald Tumbo & Fredrick Cassian Kahimba & Marcos Alberto Lana, 2019. "Modelling Rainfed Pearl Millet Yield Sensitivity to Abiotic Stresses in Semi-Arid Central Tanzania, Eastern Africa," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    4. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    5. Hasan Mirzakhaninafchi & Manjeet Singh & Anoop Kumar Dixit & Apoorv Prakash & Shikha Sharda & Jugminder Kaur & Ali Mirzakhani Nafchi, 2022. "Performance Assessment of a Sensor-Based Variable-Rate Real-Time Fertilizer Applicator for Rice Crop," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    6. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    7. Saka Habeebah Adewunmi & Uzoho Bethel Ugochukwu & Ahukaemere Chioma Mildred & Nkwopara Ugochukwu Nnamdi, 2023. "Dynamics of Nitrate- Nitrogen of Poultry and Sheep Manures Amended Degraded Ultisols in Ihiagwa, Southeastern, Nigeria," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(8), pages 59-72, August.
    8. Luís Silva & Luís Alcino Conceição & Fernando Cebola Lidon & Benvindo Maçãs, 2023. "Remote Monitoring of Crop Nitrogen Nutrition to Adjust Crop Models: A Review," Agriculture, MDPI, vol. 13(4), pages 1-23, April.
    9. Władysław Szempliński & Bogdan Dubis & Krzysztof Michał Lachutta & Krzysztof Józef Jankowski, 2021. "Energy Optimization in Different Production Technologies of Winter Triticale Grain," Energies, MDPI, vol. 14(4), pages 1-12, February.
    10. Michael Friedrich Tröster, 2023. "Assessing the Value of Organic Fertilizers from the Perspective of EU Farmers," Agriculture, MDPI, vol. 13(5), pages 1-11, May.
    11. Liu, Ziqiang & Jia, Guodong & Yu, Xinxiao, 2020. "Water uptake and WUE of Apple tree-Corn Agroforestry in the Loess hilly region of China," Agricultural Water Management, Elsevier, vol. 234(C).
    12. Karam, Fadi & Kabalan, Rabih & Breidi, Jolle & Rouphael, Youssef & Oweis, Theib, 2009. "Yield and water-production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 603-615, April.
    13. Rostamza, Mina & Chaichi, Mohammad-Reza & Jahansouz, Mohammad-Reza & Alimadadi, Ahmad, 2011. "Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels," Agricultural Water Management, Elsevier, vol. 98(10), pages 1607-1614, August.
    14. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    15. Singh, P. & Aggarwal, P. K. & Bhatia, V. S. & Murty, M. V. R. & Pala, M. & Oweis, T. & Benli, B. & Rao, K. P. C. & Wani, S. P., 2009. "Yield gap analysis: modelling of achievable yields at farm level," IWMI Books, Reports H041995, International Water Management Institute.
    16. Li, Baoru & Zhang, Xiying & Morita, Shigenori & Sekiya, Nobuhito & Araki, Hideki & Gu, Huijie & Han, Jie & Lu, Yang & Liu, Xiuwei, 2022. "Are crop deep roots always beneficial for combating drought: A review of root structure and function, regulation and phenotyping," Agricultural Water Management, Elsevier, vol. 271(C).
    17. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    18. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Shimbahri Mesfin & Girmay Gebresamuel & Mitiku Haile & Amanuel Zenebe & Girma Desta, 2020. "Mineral Fertilizer Demand for Optimum Biological Nitrogen Fixation and Yield Potentials of Legumes in Northern Ethiopia," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    20. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:44-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.