IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v214y2019icp9-16.html
   My bibliography  Save this article

Quantifying irrigation recharge sources using groundwater modeling

Author

Listed:
  • Meredith, Elizabeth
  • Blais, Nicole

Abstract

Irrigated agriculture has created artificially high groundwater levels that are now considered the normal condition in some Montana (USA) valleys. Rural housing developments that use wells completed in these shallow aquifers depend upon the annual recharge from irrigation practices and infrastructure. However, water conservation efforts aiming to reduce the volume of irrigation water diverted from streams, by either converting fields from flood irrigation to sprinkler irrigation or lining irrigation canals, may reduce recharge to the underlying alluvial aquifers. For resource managers looking to both preserve the groundwater resource for domestic well use and reduce the volume of water diverted from rivers, knowing the primary source of groundwater recharge is key to choosing the most appropriate water-saving method.

Suggested Citation

  • Meredith, Elizabeth & Blais, Nicole, 2019. "Quantifying irrigation recharge sources using groundwater modeling," Agricultural Water Management, Elsevier, vol. 214(C), pages 9-16.
  • Handle: RePEc:eee:agiwat:v:214:y:2019:i:c:p:9-16
    DOI: 10.1016/j.agwat.2018.12.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418320444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.12.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cho, J. & Barone, V.A. & Mostaghimi, S., 2009. "Simulation of land use impacts on groundwater levels and streamflow in a Virginia watershed," Agricultural Water Management, Elsevier, vol. 96(1), pages 1-11, January.
    2. Dakhlalla, Abdullah O. & Parajuli, Prem B. & Ouyang, Ying & Schmitz, Darrel W., 2016. "Evaluating the impacts of crop rotations on groundwater storage and recharge in an agricultural watershed," Agricultural Water Management, Elsevier, vol. 163(C), pages 332-343.
    3. Kahlown, M. A. & Kemper, W. D., 2004. "Seepage losses as affected by condition and composition of channel banks," Agricultural Water Management, Elsevier, vol. 65(2), pages 145-153, March.
    4. Alam, M. M. & Bhutta, M. N., 2004. "Comparative evaluation of canal seepage investigation techniques," Agricultural Water Management, Elsevier, vol. 66(1), pages 65-76, April.
    5. Meijer, Karen & Boelee, Eline & Augustijn, Denie & Molen, Irna van der, 2006. "Impacts of concrete lining of irrigation canals on availability of water for domestic use in southern Sri Lanka," Agricultural Water Management, Elsevier, vol. 83(3), pages 243-251, June.
    6. Purkey, David R. & Wallender, Wesley W. & Islam, Nazrul & SivaKumar, Bellie, 2006. "Identifying sources of recharge to shallow aquifers using a groundwater model," Agricultural Water Management, Elsevier, vol. 86(3), pages 283-287, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dench, William E. & Morgan, Leanne K., 2021. "Unintended consequences to groundwater from improved irrigation efficiency: Lessons from the Hinds-Rangitata Plain, New Zealand," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Mao, Wei & Zhu, Yan & Huang, Shuang & Han, Xudong & Sun, Guanfang & Ye, Ming & Yang, Jinzhong, 2024. "Assessment of spatial and temporal seepage losses in large canal systems under current and future water-saving conditions: A case study in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 291(C).
    3. Bisrat Ayalew Yifru & Il-Moon Chung & Min-Gyu Kim & Sun Woo Chang, 2020. "Assessment of Groundwater Recharge in Agro-Urban Watersheds Using Integrated SWAT-MODFLOW Model," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    4. Melissa Thaw & Merhawi GebreEgziabher & Jobel Y. Villafañe-Pagán & Scott Jasechko, 2022. "Modern groundwater reaches deeper depths in heavily pumped aquifer systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Lund, A.A. Rehman & Gates, Timothy K. & Scalia, Joseph, 2023. "Characterization and control of irrigation canal seepage losses: A review and perspective focused on field data," Agricultural Water Management, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yohannes, Degol Fissahaye & Ritsema, C.J. & Solomon, H. & Froebrich, J. & van Dam, J.C., 2017. "Irrigation water management: Farmers’ practices, perceptions and adaptations at Gumselassa irrigation scheme, North Ethiopia," Agricultural Water Management, Elsevier, vol. 191(C), pages 16-28.
    2. Lund, A.A. Rehman & Gates, Timothy K. & Scalia, Joseph, 2023. "Characterization and control of irrigation canal seepage losses: A review and perspective focused on field data," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Chen, Dan & Webber, Michael & Chen, Jing & Luo, Zhaohui, 2011. "Emergy evaluation perspectives of an irrigation improvement project proposal in China," Ecological Economics, Elsevier, vol. 70(11), pages 2154-2162, September.
    4. Prem B. Parajuli & Priyantha Jayakody & Ying Ouyang, 2018. "Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 985-996, February.
    5. Xiao-Bo Luan & Pu-Te Wu & Shi-Kun Sun & Xiao-Lei Li & Yu-Bao Wang & Xue-Rui Gao, 2018. "Impact of Land Use Change on Hydrologic Processes in a Large Plain Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3203-3217, July.
    6. Cho, J. & Mostaghimi, S. & Kang, M.S., 2010. "Development and application of a modeling approach for surface water and groundwater interaction," Agricultural Water Management, Elsevier, vol. 97(1), pages 123-130, January.
    7. Karen Villholth & Lorraine Rajasooriyar, 2010. "Groundwater Resources and Management Challenges in Sri Lanka–an Overview," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1489-1513, June.
    8. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.
    9. van Koppen, Barbara & Smits, Stef & Moriarty, Patrick & Penning de Vries, Frits W.T. & Mikhail, Monique & Boelee, Eline, 2009. "Climbing the water ladder: multiple-use water services for poverty reduction," IWMI Books, International Water Management Institute, number 137955.
    10. Kinzli, Kristoph-Dietrich & Martinez, Matthew & Oad, Ramchand & Prior, Adam & Gensler, David, 2010. "Using an ADCP to determine canal seepage loss in an irrigation district," Agricultural Water Management, Elsevier, vol. 97(6), pages 801-810, June.
    11. Muhammad Arif Watto & Amin W. Mugera, 2014. "Measuring Production and Irrigation Efficiencies of Rice Farms: Evidence from the Punjab Province, Pakistan," Asian Economic Journal, East Asian Economic Association, vol. 28(3), pages 301-322, September.
    12. Martínez-Santos, P. & Martínez-Alfaro, P.E., 2010. "Estimating groundwater withdrawals in areas of intensive agricultural pumping in central Spain," Agricultural Water Management, Elsevier, vol. 98(1), pages 172-181, December.
    13. C. A. O. Akinbami & J. E. Olawoye & F. A. Adesina & V. Nelson, 2019. "Exploring potential climate-related entrepreneurship opportunities and challenges for rural Nigerian women," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 9(1), pages 1-28, December.
    14. Atapattu, Sithara S. & Kodituwakku, Dekshika C., 2009. "Agriculture in South Asia and its implications on downstream health and sustainability: A review," Agricultural Water Management, Elsevier, vol. 96(3), pages 361-373, March.
    15. Asad Sarwar Qureshi & Chris Perry, 2021. "Managing Water and Salt for Sustainable Agriculture in the Indus Basin of Pakistan," Sustainability, MDPI, vol. 13(9), pages 1-14, May.
    16. Mao, Wei & Zhu, Yan & Huang, Shuang & Han, Xudong & Sun, Guanfang & Ye, Ming & Yang, Jinzhong, 2024. "Assessment of spatial and temporal seepage losses in large canal systems under current and future water-saving conditions: A case study in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 291(C).
    17. Feng, Gary & Jin, Wei & Ouyang, Ying & Huang, Yanbo, 2024. "The role of changing land use and irrigation scheduling in groundwater depletion mitigation in a humid region," Agricultural Water Management, Elsevier, vol. 291(C).
    18. Kahlown, Muhammad Akram & Raoof, Abdur & Zubair, Muhammad & Kemper, W. Doral, 2007. "Water use efficiency and economic feasibility of growing rice and wheat with sprinkler irrigation in the Indus Basin of Pakistan," Agricultural Water Management, Elsevier, vol. 87(3), pages 292-298, February.
    19. Yucong Duan & Jie Tang & Zhaoyang Li & Yao Yang & Ce Dai & Yunke Qu & Hang Lv, 2022. "Optimal Planning and Management of Land Use in River Source Region: A Case Study of Songhua River Basin, China," IJERPH, MDPI, vol. 19(11), pages 1-21, May.
    20. Liao, Xiangcheng & Mahmoud, Ali & Hu, Tiesong & Wang, Jinglin, 2022. "A novel irrigation canal scheduling model adaptable to the spatial-temporal variability of water conveyance loss," Agricultural Water Management, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:214:y:2019:i:c:p:9-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.