IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp128-134.html
   My bibliography  Save this article

Estimating the upper and lower limits of kernel weight under different water regimes in hybrid maize seed production

Author

Listed:
  • Wang, Jintao
  • Kang, Shaozhong
  • Du, Taisheng
  • Tong, Ling
  • Ding, Risheng
  • Li, Sien

Abstract

In hybrid maize (Zea mays L.) seed production, both the kernel quality and the germination rate, which are positively related to kernel weight (KW), are very important. Water deficit can change the source–sink ratio (SSR) and thus affects KW. To create a water-saving irrigation program that facilitates the production of high-quality seed, it is necessary to properly model the KW–water relationship. Irrigation experiments were conducted in 2014 and 2015 in an arid region of Northwest China to investigate the effects of deficit irrigation on maize plant biomass and yield; and pollination experiments were conducted in 2016 to obtain a wide range of SSR and KW data. Analysis of the results showed that water deficit at the vegetative or flowering stages reduced post-flowering biomass gain (PBG) and kernel number (KN), thus significantly affecting SSR. At the grain-filling stage it reduced PBG but had no significant effect on KN, thus reducing SSR. Only the treatment of no irrigation in the grain-filling stage in 2015 significantly reduced KW. The Jensen model can accurately simulate the relationship between PBG and relative evapotranspiration at each growth stage. The water sensitivity index of PBG in the vegetative, flowering, grain-filling and ripening stages were respectively 0.48, 0.48, 0.97, and 0.16. Based on the experimental data of 2016, the hyperbolic upper (UpKW) and lower (LowKW) limit equations were created for KW as a function of SSR using boundary analysis. UpKW and LowKW increased as SSR increased, but the difference between UpKW and LowKW first increased and then decreased as SSR increased. When SSR was 0, UpKW was 178.39 mg and LowKW was 155.56 mg. When SSR is not less than 867.23 mg kernel−1, UpKW and LowKW are both 326.97 mg, which is the potential KW. Combined with the KN–water model, the models developed in this study can be used to develop a water-saving and irrigation program that produces high-quality seed.

Suggested Citation

  • Wang, Jintao & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Li, Sien, 2019. "Estimating the upper and lower limits of kernel weight under different water regimes in hybrid maize seed production," Agricultural Water Management, Elsevier, vol. 213(C), pages 128-134.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:128-134
    DOI: 10.1016/j.agwat.2018.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741830430X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, J.M. & Yang, J.Y. & Liu, S. & Hoogenboom, G., 2014. "An evaluation of the statistical methods for testing the performance of crop models with observed data," Agricultural Systems, Elsevier, vol. 127(C), pages 81-89.
    2. Wang, Jintao & Kang, Shaozhong & Zhang, Xiaotao & Du, Taisheng & Tong, Ling & Ding, Risheng & Li, Sien, 2018. "Simulating kernel number under different water regimes using the Water-Flowering Model in hybrid maize seed production," Agricultural Water Management, Elsevier, vol. 209(C), pages 188-196.
    3. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.
    4. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    5. Jiang, Xuelian & Kang, Shaozhong & Tong, Ling & Li, Fusheng & Li, Donghao & Ding, Risheng & Qiu, Rangjian, 2014. "Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 142(C), pages 135-143.
    6. Li, Xiaojie & Kang, Shaozhong & Zhang, Xiaotao & Li, Fusheng & Lu, Hongna, 2018. "Deficit irrigation provokes more pronounced responses of maize photosynthesis and water productivity to elevated CO2," Agricultural Water Management, Elsevier, vol. 195(C), pages 71-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Rongchao & Wang, Jintao & Tong, Ling & Du, Taisheng & Shukla, Manoj Kumar & Jiang, Xuelian & Li, Donghao & Qin, Yonghui & He, Liuyue & Bai, Xiaorui & Guo, Xiaoxu, 2022. "Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Shi, Rongchao & Tong, Ling & Ding, Risheng & Du, Taisheng & Shukla, Manoj Kumar, 2021. "Modeling kernel weight of hybrid maize seed production with different water regimes," Agricultural Water Management, Elsevier, vol. 250(C).
    4. Wang, Jintao & Dong, Xinliang & Qiu, Rangjian & Lou, Boyuan & Tian, Liu & Chen, Pei & Zhang, Xuejia & Liu, Xiaojing & Sun, Hongyong, 2023. "Optimization of sowing date and irrigation schedule of maize in different cropping systems by APSIM for realizing grain mechanical harvesting in the North China Plain," Agricultural Water Management, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Chen, Shichao & Parsons, David & Du, Taisheng & Kumar, Uttam & Wang, Sufen, 2021. "Simulation of yield and water balance using WHCNS and APSIM combined with geostatistics across a heterogeneous field," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Wang, Jintao & Kang, Shaozhong & Zhang, Xiaotao & Du, Taisheng & Tong, Ling & Ding, Risheng & Li, Sien, 2018. "Simulating kernel number under different water regimes using the Water-Flowering Model in hybrid maize seed production," Agricultural Water Management, Elsevier, vol. 209(C), pages 188-196.
    4. Shi, Rongchao & Wang, Jintao & Tong, Ling & Du, Taisheng & Shukla, Manoj Kumar & Jiang, Xuelian & Li, Donghao & Qin, Yonghui & He, Liuyue & Bai, Xiaorui & Guo, Xiaoxu, 2022. "Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability," Agricultural Water Management, Elsevier, vol. 271(C).
    5. Guoqiang Zhang & Bo Ming & Dongping Shen & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2021. "Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    6. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Shi, Rongchao & Tong, Ling & Ding, Risheng & Du, Taisheng & Shukla, Manoj Kumar, 2021. "Modeling kernel weight of hybrid maize seed production with different water regimes," Agricultural Water Management, Elsevier, vol. 250(C).
    8. Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Peng, Manman & Han, Wenting & Li, Chaoqun & Li, Guang & Yao, Xiaomin & Zhang, Mengfei, 2021. "Diurnal and seasonal CO2 exchange and yield of maize cropland under different irrigation treatments in semiarid Inner Mongolia," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    11. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    13. Zhang, Shulin & Su, Xiaoling & Singh, Vijay P & Ayantobo, Olusola Olaitan & Xie, Juan, 2018. "Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 208(C), pages 422-430.
    14. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    15. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    16. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    17. Nasca, J.A. & Feldkamp, C.R. & Arroquy, J.I. & Colombatto, D., 2015. "Efficiency and stability in subtropical beef cattle grazing systems in the northwest of Argentina," Agricultural Systems, Elsevier, vol. 133(C), pages 85-96.
    18. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    19. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    20. Zhang, Xianbo & Yang, Hui & Shukla, Manoj K. & Du, Taisheng, 2023. "Proposing a crop-water-salt production function based on plant response to stem water potential," Agricultural Water Management, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:128-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.