Optimized fertigation maintains high yield and mitigates N2O and NO emissions in an intensified wheat–maize cropping system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2018.09.045
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Farneselli, Michela & Benincasa, Paolo & Tosti, Giacomo & Simonne, Eric & Guiducci, Marcello & Tei, Francesco, 2015. "High fertigation frequency improves nitrogen uptake and crop performance in processing tomato grown with high nitrogen and water supply," Agricultural Water Management, Elsevier, vol. 154(C), pages 52-58.
- Holst, Jirko & Liu, Wenping & Zhang, Qian & Doluschitz, Reiner, 2014. "Crop evapotranspiration, arable cropping systems and water sustainability in southern Hebei, P.R. China," Agricultural Water Management, Elsevier, vol. 141(C), pages 47-54.
- Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
- Liang, Long & Wu, Wenliang & Lal, Rattan & Guo, Yanbin, 2013. "Structural change and carbon emission of rural household energy consumption in Huantai, northern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 767-776.
- Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
- Dave S. Reay & Eric A. Davidson & Keith A. Smith & Pete Smith & Jerry M. Melillo & Frank Dentener & Paul J. Crutzen, 2012. "Global agriculture and nitrous oxide emissions," Nature Climate Change, Nature, vol. 2(6), pages 410-416, June.
- Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
- Badr, M.A. & El-Tohamy, W.A. & Zaghloul, A.M., 2012. "Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 110(C), pages 9-15.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xin Zhang & Jianheng Zhang & Liwei Li & Yang Liu & Wenchao Zhen & Guiyan Wang, 2024. "Interaction Effects of Water and Nitrogen Practices on Wheat Yield, Water and Nitrogen Productivity under Drip Fertigation in Northern China," Agriculture, MDPI, vol. 14(9), pages 1-19, September.
- Li, Haoru & Mei, Xurong & Wang, Jiandong & Huang, Feng & Hao, Weiping & Li, Baoguo, 2021. "Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China," Agricultural Water Management, Elsevier, vol. 244(C).
- Wei, Qi & Wei, Qi & Xu, Junzeng & Liu, Yuzhou & Wang, Dong & Chen, Shengyu & Qian, Wenhao & He, Min & Chen, Peng & Zhou, Xuanying & Qi, Zhiming, 2024. "Nitrogen losses from soil as affected by water and fertilizer management under drip irrigation: Development, hotspots and future perspectives," Agricultural Water Management, Elsevier, vol. 296(C).
- Zhang, Haowen & Liang, Qing & Peng, Zhengping & Zhao, Yi & Tan, Yuechen & Zhang, Xin & Bol, Roland, 2023. "Response of greenhouse gases emissions and yields to irrigation and straw practices in wheat-maize cropping system," Agricultural Water Management, Elsevier, vol. 282(C).
- Zhang, Pengyan & Liu, Jiangzhou & Wang, Maodong & Zhang, Haocheng & Yang, Nan & Ma, Jing & Cai, Huanjie, 2024. "Effects of irrigation and fertilization with biochar on the growth, yield, and water/nitrogen use of maize on the Guanzhong Plain, China," Agricultural Water Management, Elsevier, vol. 295(C).
- Ding, Wuhan & Chang, Naijie & Zhang, Jing & Li, Guichun & Zhang, Jianfeng & Ju, Xuehai & Zhang, Guilong & Li, Hu, 2022. "Optimized fertigation mitigates N2O and NO emissions and enhances NH3 volatilizations in an intensified greenhouse vegetable system," Agricultural Water Management, Elsevier, vol. 272(C).
- Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).
- Dong Guo & Chuanyong Chen & Baoyuan Zhou & Di Ma & William D. Batchelor & Xiao Han & Zaisong Ding & Mei Du & Ming Zhao & Ming Li & Wei Ma, 2022. "Drip Fertigation with Relatively Low Water and N Input Achieved Higher Grain Yield of Maize by Improving Pre- and Post-Silking Dry Matter Accumulation," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
- Patra, Kiranmoy & Parihar, C.M. & Nayak, H.S. & Rana, Biswajit & Sena, D.R. & Anand, Anjali & Reddy, K. Srikanth & Chowdhury, Manojit & Pandey, Renu & Kumar, Atul & Singh, L.K. & Ghatala, M.K. & Sidhu, 2023. "Appraisal of complementarity of subsurface drip fertigation and conservation agriculture for physiological performance and water economy of maize," Agricultural Water Management, Elsevier, vol. 283(C).
- Li, Haoru & Mei, Xurong & Nangia, Vinay & Guo, Rui & Liu, Yuee & Hao, Weiping & Wang, Jiandong, 2021. "Effects of different nitrogen fertilizers on the yield, water- and nitrogen-use efficiencies of drip-fertigated wheat and maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 243(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).
- Dong, Baodi & Liu, Mengyu & Jiang, Jingwei & Shi, Changhai & Wang, Xiaoming & Qiao, Yunzhou & Liu, Yueyan & Zhao, Zhihai & li, Dongxiao & Si, Fuyan, 2014. "Growth, grain yield, and water use efficiency of rain-fed spring hybrid millet (Setaria italica) in plastic-mulched and unmulched fields," Agricultural Water Management, Elsevier, vol. 143(C), pages 93-101.
- Li, Jiang & Mao, Xiaomin & Li, Mo, 2017. "Modeling hydrological processes in oasis of Heihe River Basin by landscape unit-based conceptual models integrated with FEFLOW and GIS," Agricultural Water Management, Elsevier, vol. 179(C), pages 338-351.
- van Oort, P.A.J. & Wang, G. & Vos, J. & Meinke, H. & Li, B.G. & Huang, J.K. & van der Werf, W., 2016. "Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain," Agricultural Water Management, Elsevier, vol. 165(C), pages 131-140.
- Rui Yang & Qijie Gao, 2021. "Water-Saving Irrigation Promotion and Food Security: A Study for China," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
- Ning Wang & Yingying Xing & Xiukang Wang, 2019. "Exploring Options for Improving Potato Productivity through Reducing Crop Yield Gap in Loess Plateau of China Based on Grey Correlation Analysis," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
- Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).
- Qu, Feng & Zhang, Qi & Jiang, Zhaoxi & Zhang, Caihong & Zhang, Zhi & Hu, Xiaohui, 2022. "Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 273(C).
- Dong, Baodi & Shi, Lei & Shi, Changhai & Qiao, Yunzhou & Liu, Mengyu & Zhang, Zhengbin, 2011. "Grain yield and water use efficiency of two types of winter wheat cultivars under different water regimes," Agricultural Water Management, Elsevier, vol. 99(1), pages 103-110.
- Yu Liu & Xiaohong Hu & Qian Zhang & Mingbo Zheng, 2017. "Improving Agricultural Water Use Efficiency: A Quantitative Study of Zhangye City Using the Static CGE Model with a CES Water−Land Resources Account," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
- Wang, Chong & Gao, Zhenzhen & Zhao, Jiongchao & Feng, Yupeng & Laraib, Iqra & Shang, Mengfei & Wang, Kaicheng & Chen, Fu & Chu, Qingquan, 2022. "Irrigation-induced hydrothermal variation affects greenhouse gas emissions and crop production," Agricultural Water Management, Elsevier, vol. 260(C).
- Qiang Fu & Ye Liu & Tianxiao Li & Dong Liu & Song Cui, 2017. "Analysis of Irrigation Water Use Efficiency Based on the Chaos Features of a Rainfall Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1961-1973, April.
- Xiaoxia Zou & Yu-e Li & Qingzhu Gao & Yunfan Wan, 2012. "How water saving irrigation contributes to climate change resilience—a case study of practices in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(2), pages 111-132, February.
- Wang, Chong & Zhao, Jiongchao & Feng, Yupeng & Shang, Mengfei & Bo, Xiaozhi & Gao, Zhenzhen & Chen, Fu & Chu, Qingquan, 2021. "Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems," Agricultural Water Management, Elsevier, vol. 248(C).
- Wang, Xiquan & Nie, Jiangwen & Wang, Peixin & Zhao, Jie & Yang, Yadong & Wang, Shang & Zeng, Zhaohai & Zang, Huadong, 2021. "Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?," Agricultural Water Management, Elsevier, vol. 243(C).
- Qi Wei & Junzeng Xu & Yawei Li & Linxian Liao & Boyi Liu & Guangqiu Jin & Fazli Hameed, 2018. "Reducing Surface Wetting Proportion of Soils Irrigated by Subsurface Drip Irrigation Can Mitigate Soil N 2 O Emission," IJERPH, MDPI, vol. 15(12), pages 1-16, December.
- Ali, Shahzad & Jan, Amanullah & Manzoor, & Sohail, Amir & Khan, Ahmad & Khan, Muhammad Ijaz & Inamullah, & Zhang, Jiahua & Daur, Ihsanullah, 2018. "Soil amendments strategies to improve water-use efficiency and productivity of maize under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 210(C), pages 88-95.
- Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
- Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
- Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
More about this item
Keywords
N2O; NO; Optimized fertilization; Drip irrigation; Nitrifier denitrification; Water pricing;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:211:y:2019:i:c:p:26-36. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.