IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v117y2013icp133-144.html
   My bibliography  Save this article

Evaluation of furrow irrigation practices in Fergana Valley of Uzbekistan

Author

Listed:
  • Reddy, J. Mohan
  • Jumaboev, K.
  • Matyakubov, B.
  • Eshmuratov, D.

Abstract

The performance of furrow irrigation systems in terms of application efficiency, runoff ratio, and water requirement efficiency were evaluated at nine different sites within the Provinces of Fergana (6 sites) and Andijon (3 sites) in Uzbekistan. A total of 46 irrigation events were evaluated during the year 2009, whereas only a total of 8 irrigation events (at 3 sites) were evaluated during the year 2010. Most of the selected fields have slopes greater than 0.005; hence, the average runoff volume from these fields was 39% of the total volume of water applied to the fields, indicating problems with selection of appropriate furrow flow rates under the given set of field conditions. For several fields, the seasonal volume of water applied was significantly different than the irrigation norms specified for the site. Though some of the farmers followed the irrigation advisory service on when to irrigate, there was a large mismatch between the volume of water applied and the volume of water deficit within the crop root zone. Reliability, in terms of magnitude and duration of flow rate received at the fields, was a major issue at all the sites. Considerable fluctuations were observed in the flow rates received at all the field sites during each irrigation event. In addition, the average flow rate received at the field sites varied considerably between irrigation events making it difficult for farmers to manage irrigation water. Farmers that had high watertable (less than 100cm from the ground surface) still applied large volumes of water, resulting in low application efficiency. Several recommendations for improving the performance of furrow irrigation systems in Uzbekistan are provided.

Suggested Citation

  • Reddy, J. Mohan & Jumaboev, K. & Matyakubov, B. & Eshmuratov, D., 2013. "Evaluation of furrow irrigation practices in Fergana Valley of Uzbekistan," Agricultural Water Management, Elsevier, vol. 117(C), pages 133-144.
  • Handle: RePEc:eee:agiwat:v:117:y:2013:i:c:p:133-144
    DOI: 10.1016/j.agwat.2012.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412002892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horst, M.G. & Shamutalov, S.S. & Pereira, L.S. & Goncalves, J.M., 2005. "Field assessment of the water saving potential with furrow irrigation in Fergana, Aral Sea basin," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 210-231, August.
    2. Sepaskhah, A. R. & Kamgar-Haghighi, A. A., 1997. "Water use and yields of sugarbeet grown under every-other-furrow irrigation with different irrigation intervals," Agricultural Water Management, Elsevier, vol. 34(1), pages 71-79, July.
    3. Graterol, Yvan E. & Eisenhauer, Dean E. & Elmore, Roger W., 1993. "Alternate-furrow irrigation for soybean production," Agricultural Water Management, Elsevier, vol. 24(2), pages 133-145, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Hamidov & Ulan Kasymov & Kakhramon Djumaboev & Carsten Paul, 2022. "Rebound Effects in Irrigated Agriculture in Uzbekistan: A Stakeholder-Based Assessment," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    2. Mirshadiev, Mirzokhid & Fleskens, Luuk & van Dam, Jos & Pulatov, Alim, 2018. "Scoping of promising land management and water use practices in the dry areas of Uzbekistan," Agricultural Water Management, Elsevier, vol. 207(C), pages 15-25.
    3. Salahou, Mohamed Khaled & Jiao, Xiyun & Lü, Haishen, 2018. "Border irrigation performance with distance-based cut-off," Agricultural Water Management, Elsevier, vol. 201(C), pages 27-37.
    4. Mazarei, Reza & Mohammadi, Amir Soltani & Naseri, Abd Ali & Ebrahimian, Hamed & Izadpanah, Zahra, 2020. "Optimization of furrow irrigation performance of sugarcane fields based on inflow and geometric parameters using WinSRFR in Southwest of Iran," Agricultural Water Management, Elsevier, vol. 228(C).
    5. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    6. Kenjabaev, Shavkat & Forkutsa, I. & Bach, M. & Frede, H.-G., 2013. "Performance evaluation of the BUDGET model in simulating cotton and wheat yield and soil moisture in Fergana valley," International Conference and Young Researchers Forum - Natural Resource Use in Central Asia: Institutional Challenges and the Contribution of Capacity Building 159114, University of Giessen (JLU Giessen), Center for International Development and Environmental Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Webber, H.A. & Madramootoo, C.A. & Bourgault, M. & Horst, M.G. & Stulina, G. & Smith, D.L., 2006. "Water use efficiency of common bean and green gram grown using alternate furrow and deficit irrigation," Agricultural Water Management, Elsevier, vol. 86(3), pages 259-268, December.
    2. Patanè, C. & Cosentino, S.L., 2010. "Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 97(1), pages 131-138, January.
    3. Kenjabaev, Shavkat & Forkutsa, I. & Bach, M. & Frede, H.-G., 2013. "Performance evaluation of the BUDGET model in simulating cotton and wheat yield and soil moisture in Fergana valley," International Conference and Young Researchers Forum - Natural Resource Use in Central Asia: Institutional Challenges and the Contribution of Capacity Building 159114, University of Giessen (JLU Giessen), Center for International Development and Environmental Research.
    4. Kifle, Mulubrehan & Gebremicael, T.G. & Girmay, Abbadi & Gebremedihin, Teferi, 2017. "Effect of surge flow and alternate irrigation on the irrigation efficiency and water productivity of onion in the semi-arid areas of North Ethiopia," Agricultural Water Management, Elsevier, vol. 187(C), pages 69-76.
    5. Li, Fusheng & Wei, Caihui & Zhang, Fucang & Zhang, Jianhua & Nong, Mengling & Kang, Shaozhong, 2010. "Water-use efficiency and physiological responses of maize under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 97(8), pages 1156-1164, August.
    6. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    7. Usman Awan & Bernhard Tischbein & Christopher Conrad & Christopher Martius & Mohsin Hafeez, 2011. "Remote Sensing and Hydrological Measurements for Irrigation Performance Assessments in a Water User Association in the Lower Amu Darya River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2467-2485, August.
    8. Darouich, Hanaa & Gonçalves, José M. & Muga, André & Pereira, Luis S., 2012. "Water saving vs. farm economics in cotton surface irrigation: An application of multicriteria analysis," Agricultural Water Management, Elsevier, vol. 115(C), pages 223-231.
    9. Wei, Jun & Cui, Yuanlai & Zhou, Sihang & Luo, Yufeng, 2022. "Regional water-saving potential calculation method for paddy rice based on remote sensing," Agricultural Water Management, Elsevier, vol. 267(C).
    10. Khanna, Abhishek & Kaur, Sanmeet, 2023. "An empirical analysis on adoption of precision agricultural techniques among farmers of Punjab for efficient land administration," Land Use Policy, Elsevier, vol. 126(C).
    11. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    12. Kang, Shaozhong & Liang, Zongsuo & Pan, Yinhua & Shi, Peize & Zhang, Jianhua, 2000. "Alternate furrow irrigation for maize production in an arid area," Agricultural Water Management, Elsevier, vol. 45(3), pages 267-274, August.
    13. Liang, Hailing & Li, Fusheng & Nong, Mengling, 2013. "Effects of alternate partial root-zone irrigation on yield and water use of sticky maize with fertigation," Agricultural Water Management, Elsevier, vol. 116(C), pages 242-247.
    14. Cucci, Giovanna & Lacolla, Giovanni & Boari, Francesca & Mastro, Mario Alberto & Cantore, Vito, 2019. "Effect of water salinity and irrigation regime on maize (Zea mays L.) cultivated on clay loam soil and irrigated by furrow in Southern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 118-124.
    15. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    16. Khaleghi, Moazam & Hassanpour, Farzad & Karandish, Fatemeh & Shahnazari, Ali, 2020. "Integrating partial root-zone drying and saline water irrigation to sustain sunflower production in freshwater-scarce regions," Agricultural Water Management, Elsevier, vol. 234(C).
    17. Bekchanov, Maksud & Ringler, C. & Bhaduri, A. & Jeuland, M., "undated". "How would the Rogun Dam affect water and energy scarcity in Central Asia?," Papers published in Journals (Open Access) H047222, International Water Management Institute.
    18. Mehran Homayounfar & Sai Lai & Mehdi Zomorodian & Ali Sepaskhah & Arman Ganji, 2014. "Optimal Crop Water Allocation in Case of Drought Occurrence, Imposing Deficit Irrigation with Proportional Cutback Constraint," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3207-3225, August.
    19. Abdelaziz M. Okasha & Nehad Deraz & Adel H. Elmetwalli & Salah Elsayed & Mayadah W. Falah & Aitazaz Ahsan Farooque & Zaher Mundher Yaseen, 2022. "Effects of Irrigation Method and Water Flow Rate on Irrigation Performance, Soil Salinity, Yield, and Water Productivity of Cauliflower," Agriculture, MDPI, vol. 12(8), pages 1-18, August.
    20. Hu, Tiantian & Kang, Shaozhong & Li, Fusheng & Zhang, Jianhua, 2009. "Effects of partial root-zone irrigation on the nitrogen absorption and utilization of maize," Agricultural Water Management, Elsevier, vol. 96(2), pages 208-214, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:117:y:2013:i:c:p:133-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.