IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v196y2018icp37-47.html
   My bibliography  Save this article

Root system characterization and water requirements of ten perennial herbaceous species for biomass production managed with high nitrogen and water inputs

Author

Listed:
  • Barco, A.
  • Maucieri, C.
  • Borin, M.

Abstract

Although several studies have investigated the aboveground production of perennial herbaceous species for biomass production, only a few details are available on their root systems and water balance. This paper provides a root system characterization and a water balance calculation for ten perennial herbaceous species (Arctium lappa L., Arundo donax L., Carex acutiformis Ehrh., Carex riparia Curtis, Glyceria maxima (Hartm.) Holmb., Helianthus tuberosus L., Iris pseudacorus L., Lythrum salicaria L., Miscanthus x giganteus Greef et Deu., Symphitum x uplandicum Nyman) cultivated with high fertilizer and water inputs in a four-year study. Crop evapotranspiration (ETc) maintained the same seasonal trend for all studied species, with the highest cumulative seasonal average water losses for A. donax (1675.1mm) and the lowest for G. maxima (1406.0mm). During the growing season, crop coefficients followed a similar trend to that reported for ETc, with average seasonal values ranging from 1.9 for A. lappa and G. maxima to 2.6 for M. x giganteus. For all species soil moisture was higher in the deeper soil layers (20–50 and 50–90cm) than in the upper (0–20cm) where a high root system biomass was observed. At the end of the study, different root system biomass productions were found between species with the highest median value at 0–50cm depth for M. x giganteus (62.6Mgha−1) and the lowest for S. x uplandicum (0.5Mgha−1). Since these topics have not been well investigated in other studies, our initial results need to be confirmed in different climatic conditions.

Suggested Citation

  • Barco, A. & Maucieri, C. & Borin, M., 2018. "Root system characterization and water requirements of ten perennial herbaceous species for biomass production managed with high nitrogen and water inputs," Agricultural Water Management, Elsevier, vol. 196(C), pages 37-47.
  • Handle: RePEc:eee:agiwat:v:196:y:2018:i:c:p:37-47
    DOI: 10.1016/j.agwat.2017.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417303360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zema, Demetrio Antonio & Bombino, Giuseppe & Andiloro, Serafina & Zimbone, Santo Marcello, 2012. "Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values," Agricultural Water Management, Elsevier, vol. 115(C), pages 55-65.
    2. Arisoa M. Rajaona & Nele Sutterer & Folkard Asch, 2012. "Potential of Waste Water Use for Jatropha Cultivation in Arid Environments," Agriculture, MDPI, vol. 2(4), pages 1-17, December.
    3. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(S1), pages 40-51.
    4. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(Supplemen), pages 40-51, January.
    5. Piccinni, Giovanni & Ko, Jonghan & Marek, Thomas & Howell, Terry, 2009. "Determination of growth-stage-specific crop coefficients (KC) of maize and sorghum," Agricultural Water Management, Elsevier, vol. 96(12), pages 1698-1704, December.
    6. Abdelhadi, A. W. & Hata, Takeshi & Tanakamaru, Haruya & Tada, Akio & Tariq, M. A., 2000. "Estimation of crop water requirements in arid region using Penman-Monteith equation with derived crop coefficients: a case study on Acala cotton in Sudan Gezira irrigated scheme," Agricultural Water Management, Elsevier, vol. 45(2), pages 203-214, July.
    7. Ko, Jonghan & Piccinni, Giovanni & Marek, Thomas & Howell, Terry, 2009. "Determination of growth-stage-specific crop coefficients (Kc) of cotton and wheat," Agricultural Water Management, Elsevier, vol. 96(12), pages 1691-1697, December.
    8. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alba Mondragón-Valero & Borja Velázquez-Martí & Domingo M. Salazar & Isabel López-Cortés, 2018. "Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller)," Energies, MDPI, vol. 11(5), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lazaro, Lira Luz Benites & Giatti, Leandro Luiz & Bermann, Celio & Giarolla, Angelica & Ometto, Jean, 2021. "Policy and governance dynamics in the water-energy-food-land nexus of biofuels: Proposing a qualitative analysis model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    3. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    4. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    5. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    6. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    7. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2011. "Der Markt für Bioenergie 2012," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 61.
    8. Thaler, S. & Zessner, M. & Weigl, M. & Rechberger, H. & Schilling, K. & Kroiss, H., 2015. "Possible implications of dietary changes on nutrient fluxes, environment and land use in Austria," Agricultural Systems, Elsevier, vol. 136(C), pages 14-29.
    9. Tiffany L. Fess & James B. Kotcon & Vagner A. Benedito, 2011. "Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population," Sustainability, MDPI, vol. 3(10), pages 1-31, October.
    10. Bose, Arnab & Ramji, Aditya & Singh, Jarnail & Dholakia, Dhairya, 2012. "A case study for sustainable development action using financial gradients," Energy Policy, Elsevier, vol. 47(S1), pages 79-86.
    11. Till Hermanns & Katharina Helming & Katharina Schmidt & Hannes Jochen König & Heiko Faust, 2015. "Stakeholder Strategies for Sustainability Impact Assessment of Land Use Scenarios: Analytical Framework and Identifying Land Use Claims," Land, MDPI, vol. 4(3), pages 1-29, September.
    12. Luís Carmo-Calado & Manuel Jesús Hermoso-Orzáez & Roberta Mota-Panizio & Bruno Guilherme-Garcia & Paulo Brito, 2020. "Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    13. Carlo Carraro & Marinella Davide & Valeria Barbi & Giacomo Marangoni, 2013. "Science adva ncements, policy immobility: the two fac es of climate (in)action," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(3), pages 5-29.
    14. Qi-Qi CHEN & Jun-Biao ZHANG & Yu HUO, 2016. "A study on research hot-spots and frontiers of agricultural science and technology innovation - visualization analysis based on the Citespace III," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(9), pages 429-445.
    15. Meysam ABEDINPOUR, 2015. "Evaluation of growth-stage-specific crop coefficients of maize using weighing lysimeter," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 10(2), pages 99-104.
    16. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    17. Fabio De Menna & Remo Alessio Malagnino & Matteo Vittuari & Giovanni Molari & Giovanna Seddaiu & Paola A. Deligios & Stefania Solinas & Luigi Ledda, 2016. "Potential Biogas Production from Artichoke Byproducts in Sardinia, Italy," Energies, MDPI, vol. 9(2), pages 1-11, February.
    18. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    19. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Sawicka, Zofia & Fogel, Piotr, 2016. "Zmiany funkcjonalne a przekształcenia ziemi rolnej na cele pozarolnicze na obszarach rozdrobnionych agrarnie," Village and Agriculture (Wieś i Rolnictwo), Polish Academy of Sciences (IRWiR PAN), Institute of Rural and Agricultural Development, vol. 1(170).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:196:y:2018:i:c:p:37-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.