IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v189y2017icp52-69.html
   My bibliography  Save this article

Determining water quality requirements of coal seam gas produced water for sustainable irrigation

Author

Listed:
  • Mallants, Dirk
  • Šimůnek, Jirka
  • Torkzaban, Saeed

Abstract

Coal seam gas production in Australia generates large volumes of produced water that is generally high in total dissolved solids and has a high sodium absorption ratio (SAR) which may affect soil structure, hydraulic conductivity, and crop production if used untreated for irrigation. By coupling major ion soil chemistry and unsaturated flow and plant water uptake, this study incorporates effects of salt concentrations on soil hydraulic properties and on root water uptake for soils irrigated with produced water featuring different water qualities. Simulations provided detailed results regarding chemical indicators of soil and plant health, i.e. SAR, EC and sodium concentrations. Results from a base scenario indicated that the use of untreated produced water for irrigation would cause SAR and EC values to significantly exceed the soil quality guide values in Australia and New Zealand (ANZECC). The simulations provided further useful insights in the type of coupled processes that might occur, and what the potential impacts could be on soil hydrology and crop growth. Calculations showed that the use of untreated produced water resulted in a decrease in soil hydraulic conductivity due to clay swelling causing water stagnation, additional plant-water stress and a reduction in plant transpiration. In case the produced water was mixed with surface water in a 1:3 ratio prior to irrigation, the calculated soil SAR values were much lower and generally acceptable for sandy to sandy-loam soil. The use of reverse osmosis treated produced water yielded an acceptable salinity profile not exceeding guide values for SAR and EC; the plant water stress was limited as there was no additional salinity stress associated with the low level of salts. Results further illustrated that accounting for coupled geochemical, hydrological and plant water uptake processes resulted in more accurate water balance calculations compared to an approach where such interactions were not implemented. Coupling unsaturated flow modelling with major ion chemistry solute transport using HYDRUS provides quantitative evidence to determine suitable water quality requirements for sustainable irrigation using coal seam gas produced water.

Suggested Citation

  • Mallants, Dirk & Šimůnek, Jirka & Torkzaban, Saeed, 2017. "Determining water quality requirements of coal seam gas produced water for sustainable irrigation," Agricultural Water Management, Elsevier, vol. 189(C), pages 52-69.
  • Handle: RePEc:eee:agiwat:v:189:y:2017:i:c:p:52-69
    DOI: 10.1016/j.agwat.2017.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417301531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnston, Christopher R. & Vance, George F. & Ganjegunte, Girisha K., 2008. "Irrigation with coalbed natural gas co-produced water," Agricultural Water Management, Elsevier, vol. 95(11), pages 1243-1252, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben & de Paz, José Miguel & Visconti, Fernando, 2019. "Assessing the environmental sustainability of irrigation with oil and gas produced water in drylands," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Dang, A. & Bennett, J. McL. & Marchuk, A. & Marchuk, S. & Biggs, A.J.W. & Raine, S.R., 2018. "Validating laboratory assessment of threshold electrolyte concentration for fields irrigated with marginal quality saline-sodic water," Agricultural Water Management, Elsevier, vol. 205(C), pages 21-29.
    3. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben & Prigent, Stephane & Stefanakis, Alexandros I., 2021. "Towards agro-environmentally sustainable irrigation with treated produced water in hyper-arid environments," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Pitt, T. & Petrie, P.R., 2020. "Impact of long-term recycled water irrigation on crop yield and soil chemical properties," Agricultural Water Management, Elsevier, vol. 237(C).
    5. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    6. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben, 2020. "Agro-environmental sustainability and financial cost of reusing gasfield-produced water for agricultural irrigation," Agricultural Water Management, Elsevier, vol. 227(C).
    7. Ewa Knapik & Grzegorz Rotko & Marta Marszałek, 2023. "Recovery of Lithium from Oilfield Brines—Current Achievements and Future Perspectives: A Mini Review," Energies, MDPI, vol. 16(18), pages 1-28, September.
    8. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Awad, J., 2020. "Management of soil salinity associated with irrigation of protected crops," Agricultural Water Management, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bern, Carleton R. & Breit, George N. & Healy, Richard W. & Zupancic, John W., 2013. "Deep subsurface drip irrigation using coal-bed sodic water: Part II. Geochemistry," Agricultural Water Management, Elsevier, vol. 118(C), pages 135-149.
    2. Hamawand, Ihsan & Yusaf, Talal & Hamawand, Sara G., 2013. "Coal seam gas and associated water: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 550-560.
    3. Adamson, David, 2013. "Buying Paper and Giving Gold: The Murray Darling Basin Plan," Risk and Sustainable Management Group Working Papers 156481, University of Queensland, School of Economics.
    4. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben & Prigent, Stephane & Stefanakis, Alexandros I., 2021. "Towards agro-environmentally sustainable irrigation with treated produced water in hyper-arid environments," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben, 2018. "Reusing oil and gas produced water for irrigation of food crops in drylands," Agricultural Water Management, Elsevier, vol. 206(C), pages 124-134.
    6. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben, 2020. "Agro-environmental sustainability and financial cost of reusing gasfield-produced water for agricultural irrigation," Agricultural Water Management, Elsevier, vol. 227(C).
    7. Adamson, David, 2012. "The 2011 Basin Plan, Climate Change and the Buy-Back," Risk and Sustainable Management Group Working Papers 149884, University of Queensland, School of Economics.
    8. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben & de Paz, José Miguel & Visconti, Fernando, 2019. "Assessing the environmental sustainability of irrigation with oil and gas produced water in drylands," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Bern, Carleton R. & Breit, George N. & Healy, Richard W. & Zupancic, John W. & Hammack, Richard, 2013. "Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement," Agricultural Water Management, Elsevier, vol. 118(C), pages 122-134.
    10. Millar, Graeme J. & Couperthwaite, Sara J. & Moodliar, Cameron D., 2016. "Strategies for the management and treatment of coal seam gas associated water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 669-691.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:189:y:2017:i:c:p:52-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.