IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v171y2016icp49-62.html
   My bibliography  Save this article

Effect of micro-irrigation type, N-source and mulching on nitrous oxide emissions in a semi-arid climate: An assessment across two years in a Merlot grape vineyard

Author

Listed:
  • Fentabil, Mesfin M.
  • Nichol, Craig F.
  • Neilsen, Gerry H.
  • Hannam, Kirsten D.
  • Neilsen, Denise
  • Forge, Tom A.
  • Jones, Melanie D.

Abstract

Micro-irrigation, fertigation, and mulching have been proposed to improve the nutrient and water-use efficiency of crop production. The effect of these management practices on the emission of nitrous oxide (N2O) from vineyards is not well understood and most prior studies were short-term (<1 year). To investigate longer-term effects, a study was conducted in grape (Vitus vinifera L. cv. Merlot planted in a sandy loam soil in British Columbia, Canada. The experiment was a factorial treatment design consisting of two micro-irrigation types (Drip or Micro-sprinkler), two nitrogen sources (surface applied Compost or fertigated Urea at a rate of 40kgNha−1), and two vineyard floor managements (bark Mulch or “Clean”—meaning bare soil). Frequent measurements of N2O flux and soil and environmental variables were made over two complete years (2013 and 2014). A considerable portion (37% in 2013 and 61% in 2014) of the annual cumulative N2O emission (ΣN2O) occurred during the pre-growing season particularly within the thaw period. In 2013, the annual area-scaled ΣN2O emissions for Drip was ≈1.8×Micro-sprinkler, Urea was ≈1.5×Compost and Clean was ≈1.7×Mulch. In 2014, ΣN2O emissions were over 14% higher, likely due to more freeze–thaw events, higher soil mineral N availability (47% higher), but treatments differences were not significantly different. Analysed over two years, micro-sprinkler reduced growing season emissions by 29% and surface application of bark mulch decreased annual area-scaled and yield-scaled ΣN2O emissions by 28% and 23%, respectively, suggesting bark mulch as a strategy for mitigating N2O emission. The observed interannual variability in the total N2O emissions suggests that at least a minimum of 2 years of continuous study may be required to estimate representative annual N2O emission budgets and to recommend N2O mitigation strategies in vineyard systems.

Suggested Citation

  • Fentabil, Mesfin M. & Nichol, Craig F. & Neilsen, Gerry H. & Hannam, Kirsten D. & Neilsen, Denise & Forge, Tom A. & Jones, Melanie D., 2016. "Effect of micro-irrigation type, N-source and mulching on nitrous oxide emissions in a semi-arid climate: An assessment across two years in a Merlot grape vineyard," Agricultural Water Management, Elsevier, vol. 171(C), pages 49-62.
  • Handle: RePEc:eee:agiwat:v:171:y:2016:i:c:p:49-62
    DOI: 10.1016/j.agwat.2016.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416300592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanson, Blaine R. & Simunek, Jirka & Hopmans, Jan W., 2006. "Evaluation of urea-ammonium-nitrate fertigation with drip irrigation using numerical modeling," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 102-113, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Binbin & Yan, Sihui & Li, Bin & Wu, Shufang & Feng, Hao & Gao, Xiaodong & Song, Xiaolin & Siddique, Kadambot H.M., 2023. "Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards," Agricultural Water Management, Elsevier, vol. 288(C).
    2. Guo, Yanjie & Ji, Yanzhi & Zhang, Jie & Liu, Qiao & Han, Jian & Zhang, Lijuan, 2022. "Effects of water and nitrogen management on N2O emissions and NH3 volatilization from a vineyard in North China," Agricultural Water Management, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    2. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    3. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    4. Singh, Simratpal & Coppi, Luca & Wang, Zijian & Tenuta, Mario & Holländer, Hartmut M., 2019. "Regionalisation of nitrate leaching on pasture land in Southern Manitoba," Agricultural Water Management, Elsevier, vol. 222(C), pages 286-300.
    5. Amin, M.G. Mostofa & Šimůnek, Jirka & Lægdsmand, Mette, 2014. "Simulation of the redistribution and fate of contaminants from soil-injected animal slurry," Agricultural Water Management, Elsevier, vol. 131(C), pages 17-29.
    6. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    7. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    8. Sharmiladevi, R. & Ravikumar, V., 2021. "Simulation of nitrogen fertigation schedule for drip irrigated paddy," Agricultural Water Management, Elsevier, vol. 252(C).
    9. Rahil, M.H. & Antonopoulos, V.Z., 2007. "Simulating soil water flow and nitrogen dynamics in a sunflower field irrigated with reclaimed wastewater," Agricultural Water Management, Elsevier, vol. 92(3), pages 142-150, September.
    10. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    11. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    12. He, Yuelin & Xi, Benye & Li, Guangde & Wang, Ye & Jia, Liming & Zhao, Dehai, 2021. "Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) pla," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Che, Zheng & Wang, Jun & Li, Jiusheng, 2022. "Modeling strategies to balance salt leaching and nitrogen loss for drip irrigation with saline water in arid regions," Agricultural Water Management, Elsevier, vol. 274(C).
    14. Tan, Xuezhi & Shao, Dongguo & Gu, Wenquan & Liu, Huanhuan, 2015. "Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 150(C), pages 67-80.
    15. Hou, Zhenan & Chen, Weiping & Li, Xiao & Xiu, Lin & Wu, Laosheng, 2009. "Effects of salinity and fertigation practice on cotton yield and 15N recovery," Agricultural Water Management, Elsevier, vol. 96(10), pages 1483-1489, October.
    16. Azad, Nasrin & Behmanesh, Javad & Rezaverdinejad, Vahid & Abbasi, Fariborz & Navabian, Maryam, 2018. "Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements," Agricultural Water Management, Elsevier, vol. 208(C), pages 344-356.
    17. Devkota, Krishna Prasad & Devkota, Mina & Rezaei, Meisam & Oosterbaan, Roland, 2022. "Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands," Agricultural Systems, Elsevier, vol. 198(C).
    18. Guo, Yanhong & Wang, Zhen & Li, Jiusheng, 2023. "Coupling effects of phosphate fertilizer type and drip fertigation strategy on soil nutrient distribution, maize yield and nutrient uptake," Agricultural Water Management, Elsevier, vol. 290(C).
    19. Karandish, Fatemeh & Šimůnek, Jiří, 2018. "An application of the water footprint assessment to optimize production of crops irrigated with saline water: A scenario assessment with HYDRUS," Agricultural Water Management, Elsevier, vol. 208(C), pages 67-82.
    20. Wang, Jun & Huang, Guanhua & Zhan, Hongbin & Mohanty, Binayak P. & Zheng, Jianhua & Huang, Quanzhong & Xu, Xu, 2014. "Evaluation of soil water dynamics and crop yield under furrow irrigation with a two-dimensional flow and crop growth coupled model," Agricultural Water Management, Elsevier, vol. 141(C), pages 10-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:171:y:2016:i:c:p:49-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.