IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v141y2014icp74-83.html
   My bibliography  Save this article

Effect of height and time lag on the estimation of sensible heat flux over a drip-irrigated vineyard using the surface renewal (SR) method across distinct phenological stages

Author

Listed:
  • Poblete-Echeverría, Carlos
  • Sepúlveda-Reyes, Daniel
  • Ortega-Farías, Samuel

Abstract

For drip-irrigated vineyards, sensible heat flux (H) is a key parameter to estimate water requirements, when actual evapotranspiration (ETa) is computed as a residual from the surface energy balance. In this regard, a field experiment was carried out to study the effect of measurement height (z) and time lag (r) on the estimation of H over a drip-irrigated vineyard using classical formulation of surface renewal (SR) method. For vineyards, previous studies have indicated that the calibration factor (α) and the accuracy of the SR method depend on z, however the combined effect of z and r on the estimation of H has not been studied in detail for key phenological stages. In this study 12 combinations of 4 time lags (r1=0.2s, r2=0.5s, r3=0.7s and r4=1.0s) and 3 measurement heights (z1=0.5, z2=1.0 and z3=1.5m above canopy) of high-frequency air temperature were evaluated to estimate H using the SR method (HSR) across distinct phenological stages. A three-dimensional sonic anemometer (CSAT3) was used to measure sensible heat (HEC) over the vineyard. Results indicated that the regression analysis between HSR and HEC was highly significant with determination coefficients (r2) between 0.70 and 0.93. Also, α values registered in this study varied from 0.67 to 1.01 for the different combinations and phenological periods. Calibrated HSR computed using z1 and r3 gave the best estimates of HEC in the validation period, with a root mean square error (RMSE) of 52.2Wm−2 and mean absolute error (MAE) of 35.2Wm−2 for all dataset analysis.

Suggested Citation

  • Poblete-Echeverría, Carlos & Sepúlveda-Reyes, Daniel & Ortega-Farías, Samuel, 2014. "Effect of height and time lag on the estimation of sensible heat flux over a drip-irrigated vineyard using the surface renewal (SR) method across distinct phenological stages," Agricultural Water Management, Elsevier, vol. 141(C), pages 74-83.
  • Handle: RePEc:eee:agiwat:v:141:y:2014:i:c:p:74-83
    DOI: 10.1016/j.agwat.2014.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414001085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zapata, N. & Martinez-Cob, A., 2002. "Evaluation of the surface renewal method to estimate wheat evapotranspiration," Agricultural Water Management, Elsevier, vol. 55(2), pages 141-157, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaoyin & Xu, Junzeng & Liu, Boyi & Wang, Weiguang & Li, Yawei, 2019. "A novel model of water-heat coupling for water-saving irrigated rice fields based on water and energy balance: Model formulation and verification," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Xu, Junzeng & Liu, Xiaoyin & Yang, Shihong & Qi, Zhiming & Wang, Yijiang, 2017. "Modeling rice evapotranspiration under water-saving irrigation by calibrating canopy resistance model parameters in the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 182(C), pages 55-66.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pozníková, Gabriela & Fischer, Milan & van Kesteren, Bram & Orság, Matěj & Hlavinka, Petr & Žalud, Zdeněk & Trnka, Miroslav, 2018. "Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods," Agricultural Water Management, Elsevier, vol. 209(C), pages 249-263.
    2. Benes, S.E. & Adhikari, D.D. & Grattan, S.R. & Snyder, R.L., 2012. "Evapotranspiration potential of forages irrigated with saline-sodic drainage water," Agricultural Water Management, Elsevier, vol. 105(C), pages 1-7.
    3. Playán, E. & Pérez-Coveta, O. & Marti­nez-Cob, A. & Herrero, J. & Garcia-Navarro, P. & Latorre, B. & Brufau, P. & Garcés, J., 2008. "Overland water and salt flows in a set of rice paddies," Agricultural Water Management, Elsevier, vol. 95(6), pages 645-658, June.
    4. Snyder, R.L. & Pedras, C. & Montazar, A. & Henry, J.M. & Ackley, D., 2015. "Advances in ET-based landscape irrigation management," Agricultural Water Management, Elsevier, vol. 147(C), pages 187-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:141:y:2014:i:c:p:74-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.