IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v126y2013icp46-55.html
   My bibliography  Save this article

Mango (Mangifera indica L. cv. Nam Dokmai) production in Northern Thailand—Costs and returns under extreme weather conditions and different irrigation treatments

Author

Listed:
  • Schulze, Katrin
  • Spreer, Wolfram
  • Keil, Alwin
  • Ongprasert, Somchai
  • Müller, Joachim

Abstract

The manual irrigation of mangos by the use of water hoses is a common management practice in northern Thailand. However, this method is water-inefficient and labor intensive. Farmers in northern Thailand are increasingly confronted with weather anomalies, such as extended droughts and excessive rainfall in consecutive years. The objective of this paper is to investigate the water-saving potential and monetary benefit of farmers of different irrigation methods under conditions of more frequent weather abnormalities. This paper is concluded with a discussion of the possible impact of water pricing on a farmer's water consumption. To date, no comparative field test has been conducted between traditional irrigation and micro sprinkler irrigation, which highlights the water-saving potential on one hand and shows a farmer's monetary benefit on the other hand.

Suggested Citation

  • Schulze, Katrin & Spreer, Wolfram & Keil, Alwin & Ongprasert, Somchai & Müller, Joachim, 2013. "Mango (Mangifera indica L. cv. Nam Dokmai) production in Northern Thailand—Costs and returns under extreme weather conditions and different irrigation treatments," Agricultural Water Management, Elsevier, vol. 126(C), pages 46-55.
  • Handle: RePEc:eee:agiwat:v:126:y:2013:i:c:p:46-55
    DOI: 10.1016/j.agwat.2013.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413001078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spreer, Wolfram & Ongprasert, Somchai & Hegele, Martin & Wnsche, Jens N. & Mller, Joachim, 2009. "Yield and fruit development in mango (Mangifera indica L. cv. Chok Anan) under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 574-584, April.
    2. Johansson, Robert C., 2000. "Pricing irrigation water : a literature survey," Policy Research Working Paper Series 2449, The World Bank.
    3. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    4. Spreer, W. & Nagle, M. & Neidhart, S. & Carle, R. & Ongprasert, S. & Muller, J., 2007. "Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv. `Chok Anan')," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 173-180, March.
    5. Fukuda, Shinji & Spreer, Wolfram & Yasunaga, Eriko & Yuge, Kozue & Sardsud, Vicha & Müller, Joachim, 2013. "Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 116(C), pages 142-150.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaogang & Li, Fusheng & Zhang, Yan & Yang, Qiliang, 2016. "Effects of deficit irrigation on yield and nutritional quality of Arabica coffee (Coffea arabica) under different N rates in dry and hot region of southwest China," Agricultural Water Management, Elsevier, vol. 172(C), pages 1-8.
    2. Liu, Xiaogang & Peng, Youliang & Yang, Qiliang & Wang, Xiukang & Cui, Ningbo, 2021. "Determining optimal deficit irrigation and fertilization to increase mango yield, quality, and WUE in a dry hot environment based on TOPSIS," Agricultural Water Management, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leontina Lipan & Aarón A. Carbonell-Pedro & Belén Cárceles Rodríguez & Víctor Hugo Durán-Zuazo & Dionisio Franco Tarifa & Iván Francisco García-Tejero & Baltasar Gálvez Ruiz & Simón Cuadros Tavira & R, 2021. "Can Sustained Deficit Irrigation Save Water and Meet the Quality Characteristics of Mango?," Agriculture, MDPI, vol. 11(5), pages 1-16, May.
    2. Liu, Xiaogang & Peng, Youliang & Yang, Qiliang & Wang, Xiukang & Cui, Ningbo, 2021. "Determining optimal deficit irrigation and fertilization to increase mango yield, quality, and WUE in a dry hot environment based on TOPSIS," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    4. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    5. Kusakabe, A. & Contreras-Barragan, B.A. & Simpson, C.R. & Enciso, J.M. & Nelson, S.D. & Melgar, J.C., 2016. "Application of partial rootzone drying to improve irrigation water use efficiency in grapefruit trees," Agricultural Water Management, Elsevier, vol. 178(C), pages 66-75.
    6. Alfonso Expósito & Julio Berbel, 2017. "Why Is Water Pricing Ineffective for Deficit Irrigation Schemes? A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 1047-1059, February.
    7. Fukuda, Shinji & Spreer, Wolfram & Yasunaga, Eriko & Yuge, Kozue & Sardsud, Vicha & Müller, Joachim, 2013. "Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 116(C), pages 142-150.
    8. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    9. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    11. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    12. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    13. Saseendran, S.A. & Ahuja, Lajpat R. & Ma, Liwang & Trout, Thomas J. & McMaster, Gregory S. & Nielsen, David C. & Ham, Jay M. & Andales, Allan A. & Halvorson, Ardel D. & Chávez, José L. & Fang, Quanxia, 2015. "Developing and normalizing average corn crop water production functions across years and locations using a system model," Agricultural Water Management, Elsevier, vol. 157(C), pages 65-77.
    14. Iqbal, M. Anjum & Bodner, G. & Heng, L.K. & Eitzinger, J. & Hassan, A., 2010. "Assessing yield optimization and water reduction potential for summer-sown and spring-sown maize in Pakistan," Agricultural Water Management, Elsevier, vol. 97(5), pages 731-737, May.
    15. Molle, Francois & Berkoff, Jeremy, 2007. "Water pricing in irrigation: the lifetime of an idea," Book Chapters,, International Water Management Institute.
    16. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    17. Jingwei Wang & Yuan Li & Wenquan Niu, 2020. "Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality," IJERPH, MDPI, vol. 17(3), pages 1-18, January.
    18. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    19. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.
    20. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:126:y:2013:i:c:p:46-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.