IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v125y2013icp13-25.html
   My bibliography  Save this article

Water relations, biochemical – physiological and yield responses of olive trees (Olea europaea L. cvs. Arbequina and Manzanilla) under drought stress during the pre-flowering and flowering period

Author

Listed:
  • Pierantozzi, Pierluigi
  • Torres, Mariela
  • Bodoira, Romina
  • Maestri, Damián

Abstract

In arid and semiarid regions from Argentina, where the main olive production areas are located, evapotranspiration is high and rainfall is minimal during winter and spring months, as compared with the Mediterranean region where winter rainfall precludes the need of irrigation in such period. The aim of the work was to study water relations, biochemical–physiological and yield responses of olive trees (Olea europaea L., Arbequina and Manzanilla cultivars) under different drought stress levels applied during the pre-flowering–flowering period. Increasing levels of water deficit affected plant water relations as measured by pronounced drops of stem water potentials (near −4.0MPa) in treatments with severe water deprivation at the end of the flowering period. Deficit irrigation was associated with some leaf-level biochemical-physiological responses (accumulation of osmotically active substances, increased concentration of high molecular weight hydrocarbons and cuticle thickening), which can be interpreted as adaptation mechanisms of olive to water deficit. Water stress was also associated with increased lipid peroxidation and decreased levels of photosynthetic pigments, stomatal conductance and photosynthetic rate. During the first crop year analyzed, a significant decrease in fruit set and fruit yield was observed in treatments under water deprivation. Also, all treatments evaluated showed strong drops in fruiting and yield parameters during the second crop year suggesting a marked bearing pattern for both olive cultivars. From a practical standpoint, little irrigation (50% ETc) may be sufficient to maintain adequate plant water potentials for the coldest winter months, but high (75% ETc) or full (100% ETc) irrigation rates could be needed by mid-August (approximately 2 months before flowering) to avoid detrimental effects of water stress on biochemical–physiological and yield parameters of olive trees cultivated in areas with dry winter-spring season.

Suggested Citation

  • Pierantozzi, Pierluigi & Torres, Mariela & Bodoira, Romina & Maestri, Damián, 2013. "Water relations, biochemical – physiological and yield responses of olive trees (Olea europaea L. cvs. Arbequina and Manzanilla) under drought stress during the pre-flowering and flowering period," Agricultural Water Management, Elsevier, vol. 125(C), pages 13-25.
  • Handle: RePEc:eee:agiwat:v:125:y:2013:i:c:p:13-25
    DOI: 10.1016/j.agwat.2013.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413000942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tubeileh, Ashraf & Bruggeman, Adriana & Turkelboom, Francis, 2016. "Water-harvesting designs for fruit tree production in dry environments," Agricultural Water Management, Elsevier, vol. 165(C), pages 190-197.
    2. Pierantozzi, P. & Torres, M. & Tivani, M. & Contreras, C. & Gentili, L. & Parera, C. & Maestri, D., 2020. "Spring deficit irrigation in olive (cv. Genovesa) growing under arid continental climate: Effects on vegetative growth and productive parameters," Agricultural Water Management, Elsevier, vol. 238(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:125:y:2013:i:c:p:13-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.