IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v115y2012icp252-266.html
   My bibliography  Save this article

Modelling the impact of subcatchment and regional scale drainage in the Blackwood Basin, Western Australia

Author

Listed:
  • Ali, Riasat
  • Viney, Neil R.
  • Hodgson, Geoff
  • Aryal, Santosh
  • Dawes, Warrick

Abstract

This study assesses the impacts of several subcatchment and regional scale artificial drainage on on-site groundwater levels and salinity, and off-site streamflows, salt loads and lake discharge rates using a hydrological model LASCAM. The model is applied to the 21,147km2 Blackwood Basin in southwestern Australia, much of which has been experiencing long-term rises in groundwater levels in response to large-scale clearing of native vegetation over the past 160 years. These rises in groundwater levels have led to substantial increases in stream salinity, waterlogging and land salinisation.

Suggested Citation

  • Ali, Riasat & Viney, Neil R. & Hodgson, Geoff & Aryal, Santosh & Dawes, Warrick, 2012. "Modelling the impact of subcatchment and regional scale drainage in the Blackwood Basin, Western Australia," Agricultural Water Management, Elsevier, vol. 115(C), pages 252-266.
  • Handle: RePEc:eee:agiwat:v:115:y:2012:i:c:p:252-266
    DOI: 10.1016/j.agwat.2012.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412002442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandez, G.P. & Chescheir, G.M. & Skaggs, R.W. & Amatya, D.M., 2006. "DRAINMOD-GIS: A lumped parameter watershed scale drainage and water quality model," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 77-97, March.
    2. Ale, S. & Bowling, L.C. & Owens, P.R. & Brouder, S.M. & Frankenberger, J.R., 2012. "Development and application of a distributed modeling approach to assess the watershed-scale impact of drainage water management," Agricultural Water Management, Elsevier, vol. 107(C), pages 23-33.
    3. Luo, W. & Sands, G.R. & Youssef, M. & Strock, J.S. & Song, I. & Canelon, D., 2010. "Modeling the impact of alternative drainage practices in the northern Corn-belt with DRAINMOD-NII," Agricultural Water Management, Elsevier, vol. 97(3), pages 389-398, March.
    4. Boughton, W., 2005. "Catchment water balance modelling in Australia 1960-2004," Agricultural Water Management, Elsevier, vol. 71(2), pages 91-116, February.
    5. Pannell, David J. & Ewing, Michael A., 2006. "Managing secondary dryland salinity: Options and challenges," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 41-56, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salazar, Osvaldo & Wesström, Ingrid & Joel, Abraham & Youssef, Mohamed A., 2013. "Application of an integrated framework for estimating nitrate loads from a coastal watershed in south-east Sweden," Agricultural Water Management, Elsevier, vol. 129(C), pages 56-68.
    2. Moriasi, Daniel N. & Gowda, Prasanna H. & Arnold, Jeffrey G. & Mulla, David J. & Ale, Srinivasulu & Steiner, Jean L., 2013. "Modeling the impact of nitrogen fertilizer application and tile drain configuration on nitrate leaching using SWAT," Agricultural Water Management, Elsevier, vol. 130(C), pages 36-43.
    3. Ross, Jared A. & Herbert, Matthew E. & Sowa, Scott P. & Frankenberger, Jane R. & King, Kevin W. & Christopher, Sheila F. & Tank, Jennifer L. & Arnold, Jeffrey G. & White, Mike J. & Yen, Haw, 2016. "A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management," Agricultural Water Management, Elsevier, vol. 178(C), pages 366-376.
    4. M. Dedewanou & S. Binet & J. Rouet & Y. Coquet & A. Bruand & H. Noel, 2015. "Groundwater Vulnerability and Risk Mapping Based on Residence Time Distributions: Spatial Analysis for the Estimation of Lumped Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5489-5504, December.
    5. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    6. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    7. Michael Ward & Jared Dent, 2010. "Projected impacts of salinity on dryland property values in South West Australia," Environmental Economics Research Hub Research Reports 1090, Environmental Economics Research Hub, Crawford School of Public Policy, The Australian National University.
    8. Lee, Lisa Y. & Ancev, Tihomir & Vervoort, Willem, 2012. "Evaluation of environmental policies targeting irrigated agriculture: The case of the Mooki catchment, Australia," Agricultural Water Management, Elsevier, vol. 109(C), pages 107-116.
    9. Ross Kingwell & Michele John & Michael Robertson, 2008. "A review of a community-based approach to combating land degradation: dryland salinity management in Australia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(6), pages 899-912, December.
    10. Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    11. Negm, L.M. & Youssef, M.A. & Chescheir, G.M. & Skaggs, R.W., 2016. "DRAINMOD-based tools for quantifying reductions in annual drainage flow and nitrate losses resulting from drainage water management on croplands in eastern North Carolina," Agricultural Water Management, Elsevier, vol. 166(C), pages 86-100.
    12. Youssef, Mohamed A. & Liu, Yu & Chescheir, George M. & Skaggs, R. Wayne & Negm, Lamyaa M., 2021. "DRAINMOD modeling framework for simulating controlled drainage effect on lateral seepage from artificially drained fields," Agricultural Water Management, Elsevier, vol. 254(C).
    13. Crossman, Neville D. & Bryan, Brett A., 2009. "Identifying cost-effective hotspots for restoring natural capital and enhancing landscape multifunctionality," Ecological Economics, Elsevier, vol. 68(3), pages 654-668, January.
    14. Singh, Shailendra & Bhattarai, Rabin & Negm, Lamyaa M. & Youssef, Mohamed A. & Pittelkow, Cameron M., 2020. "Evaluation of nitrogen loss reduction strategies using DRAINMOD-DSSAT in east-central Illinois," Agricultural Water Management, Elsevier, vol. 240(C).
    15. Juliane Haensch & Sarah Ann Wheeler & Alec Zuo & Henning Bjornlund, 2016. "The Impact of Water and Soil Salinity on Water Market Trading in the Southern Murray–Darling Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-26, March.
    16. Liang, Hao & Qi, Zhiming & Hu, Kelin & Li, Baoguo & Prasher, Shiv O., 2018. "Modelling subsurface drainage and nitrogen losses from artificially drained cropland using coupled DRAINMOD and WHCNS models," Agricultural Water Management, Elsevier, vol. 195(C), pages 201-210.
    17. Negm, Lamyaa M. & Youssef, Mohamed A. & Jaynes, Dan B., 2017. "Evaluation of DRAINMOD-DSSAT simulated effects of controlled drainage on crop yield, water balance, and water quality for a corn-soybean cropping system in central Iowa," Agricultural Water Management, Elsevier, vol. 187(C), pages 57-68.
    18. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    19. Ale, Srinivasulu & Gowda, Prasanna H. & Mulla, David J. & Moriasi, Daniel N. & Youssef, Mohamed A., 2013. "Comparison of the performances of DRAINMOD-NII and ADAPT models in simulating nitrate losses from subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 129(C), pages 21-30.
    20. Gunn, Kpoti M. & Fausey, Norman R. & Shang, Yuhui & Shedekar, Vinayak S. & Ghane, Ehsan & Wahl, Mark D. & Brown, Larry C., 2015. "Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA," Agricultural Water Management, Elsevier, vol. 149(C), pages 131-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:115:y:2012:i:c:p:252-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.