IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v107y2012icp14-22.html
   My bibliography  Save this article

Modeling for conjunctive use irrigation planning in sodic groundwater areas

Author

Listed:
  • Kaledhonkar, M.J.
  • Sharma, D.R.
  • Tyagi, N.K.
  • Kumar, Ashwani
  • Van Der Zee, S.E.A.T.M.

Abstract

Prevalent irrigation water quality guidelines for use of sodic groundwater on sandy loam soils of Haryana for kharif (monsoon) fallow–rabi (winter) wheat crop rotation were investigated through modeling with UNSATCHEM. Three sandy loam soils that vary with respect to soil CEC (Cation Exchange Capacity) and Ks (Saturated Hydraulic Conductivity) were considered in the modeling. A procedure was developed to identify safe SAR value for sodic groundwater at a constant RSC for individual farm/soil considering soil CEC and proportions of sodic and fresh waters used for irrigation as variables. The criterion was that if the SAR of available sodic groundwater exceeded the safe SAR-value for irrigation water, a reduction in crop yield occurs. With this assumption, the procedure was tested with published data and the specific data collected from farmers’ fields. If SAR of groundwater exceeds the safe SAR-value, rice–wheat rotation is assumed to be not sustainable in the long-term. The sustainability of rice–wheat crop rotation in sodic groundwater areas in the Assandh and Nissang blocks of the Karnal district of Haryana was assessed. The described procedure of identifying the safe SAR-values for individual farm/soil is more appropriate and flexible than already existing guidelines and could be easily used for efficient conjunctive water use planning of sodic and fresh water.

Suggested Citation

  • Kaledhonkar, M.J. & Sharma, D.R. & Tyagi, N.K. & Kumar, Ashwani & Van Der Zee, S.E.A.T.M., 2012. "Modeling for conjunctive use irrigation planning in sodic groundwater areas," Agricultural Water Management, Elsevier, vol. 107(C), pages 14-22.
  • Handle: RePEc:eee:agiwat:v:107:y:2012:i:c:p:14-22
    DOI: 10.1016/j.agwat.2011.12.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411003581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.12.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaledhonkar, M.J. & Keshari, A.K. & Van Der Zee, S.E.A.T.M., 2006. "Relative sensitivity of ESP profile to spatial and temporal variability in cation exchange capacity and pore water velocity under simulated field conditions," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 58-68, May.
    2. Pearson, George A., 1960. "Tolerance of Crops to Exchangeable Sodium," Agricultural Information Bulletins 308922, United States Department of Agriculture, Economic Research Service.
    3. Minhas, P. S. & Gupta, R. K., 1993. "Conjunctive use of saline and non-saline waters. I. Response of wheat to initial salinity profiles and salinisation patterns," Agricultural Water Management, Elsevier, vol. 23(2), pages 125-137, April.
    4. Choudhary, O. P. & Josan, A. S. & Bajwa, M. S., 2001. "Yield and fibre quality of cotton cultivars as affected by the build-up of sodium in the soils with sustained sodic irrigations under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 49(1), pages 1-9, July.
    5. Kaledhonkar, M. J. & Tyagi, N. K. & Van Der Zee, S. E. A. T. M., 2001. "Solute transport modelling in soil for irrigation field experiments with alkali water," Agricultural Water Management, Elsevier, vol. 51(2), pages 153-171, October.
    6. Naresh, R. K. & Minhas, P. S. & Goyal, A. K. & Chauhan, C. P. S. & Gupta, R. K., 1993. "Conjunctive use of saline and non-saline waters. II. Field comparisions of cyclic uses and mixing for wheat," Agricultural Water Management, Elsevier, vol. 23(2), pages 139-148, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yohannes, Degol Fissahaye & Ritsema, C.J. & Solomon, H. & Froebrich, J. & van Dam, J.C., 2017. "Irrigation water management: Farmers’ practices, perceptions and adaptations at Gumselassa irrigation scheme, North Ethiopia," Agricultural Water Management, Elsevier, vol. 191(C), pages 16-28.
    2. Kumar, P. & Sarangi, A. & Singh, D.K. & Parihar, S.S. & Sahoo, R.N., 2015. "Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model," Agricultural Water Management, Elsevier, vol. 148(C), pages 72-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choudhary, O.P. & Ghuman, B.S. & Josan, A.S. & Bajwa, M.S., 2006. "Effect of alternating irrigation with sodic and non-sodic waters on soil properties and sunflower yield," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 151-156, September.
    2. Minhas, P.S. & Dubey, S.K. & Sharma, D.R., 2007. "Comparative affects of blending, intera/inter-seasonal cyclic uses of alkali and good quality waters on soil properties and yields of paddy and wheat," Agricultural Water Management, Elsevier, vol. 87(1), pages 83-90, January.
    3. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    4. Su, Han & Sun, Hongyong & Dong, Xinliang & Chen, Pei & Zhang, Xuejia & Tian, Liu & Liu, Xiaojing & Wang, Jintao, 2021. "Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    6. Mandare, A.B. & Ambast, S.K. & Tyagi, N.K. & Singh, J., 2008. "On-farm water management in saline groundwater area under scarce canal water supply condition in the Northwest India," Agricultural Water Management, Elsevier, vol. 95(5), pages 516-526, May.
    7. Verma, A.K. & Gupta, S.K. & Isaac, R.K., 2012. "Use of saline water for irrigation in monsoon climate and deep water table regions: Simulation modeling with SWAP," Agricultural Water Management, Elsevier, vol. 115(C), pages 186-193.
    8. Chauhan, C.P.S. & Singh, R.B. & Gupta, S.K., 2008. "Supplemental irrigation of wheat with saline water," Agricultural Water Management, Elsevier, vol. 95(3), pages 253-258, March.
    9. Kaledhonkar, M.J. & Keshari, A.K. & Van Der Zee, S.E.A.T.M., 2006. "Relative sensitivity of ESP profile to spatial and temporal variability in cation exchange capacity and pore water velocity under simulated field conditions," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 58-68, May.
    10. Rajesh Kumar Soothar & Wenying Zhang & Binhui Liu & Moussa Tankari & Chao Wang & Li Li & Huanli Xing & Daozhi Gong & Yaosheng Wang, 2019. "Sustaining Yield of Winter Wheat under Alternate Irrigation Using Saline Water at Different Growth Stages: A Case Study in the North China Plain," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    11. Kumar, P. & Sarangi, A. & Singh, D.K. & Parihar, S.S. & Sahoo, R.N., 2015. "Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model," Agricultural Water Management, Elsevier, vol. 148(C), pages 72-83.
    12. Minhas, P. S., 1996. "Saline water management for irrigation in India," Agricultural Water Management, Elsevier, vol. 30(1), pages 1-24, March.
    13. Hamamouche, Meriem Farah & Kuper, Marcel & Riaux, Jeanne & Leduc, Christian, 2017. "Conjunctive use of surface and ground water resources in a community-managed irrigation system — The case of the Sidi Okba palm grove in the Algerian Sahara," Agricultural Water Management, Elsevier, vol. 193(C), pages 116-130.
    14. Jalali, M. & Merikhpour, H. & Kaledhonkar, M.J. & Van Der Zee, S.E.A.T.M., 2008. "Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils," Agricultural Water Management, Elsevier, vol. 95(2), pages 143-153, February.
    15. Singh, R.B. & Chauhan, C.P.S. & Minhas, P.S., 2009. "Water production functions of wheat (Triticum aestivum L.) irrigated with saline and alkali waters using double-line source sprinkler system," Agricultural Water Management, Elsevier, vol. 96(5), pages 736-744, May.
    16. Srivastava, Sunil Kumar, 2019. "Assessment of groundwater quality for the suitability of irrigation and its impacts on crop yields in the Guna district, India," Agricultural Water Management, Elsevier, vol. 216(C), pages 224-241.
    17. van der Zee, S.E.A.T.M. & Shah, S.H.H. & van Uffelen, C.G.R. & Raats, P.A.C. & dal Ferro, N., 2010. "Soil sodicity as a result of periodical drought," Agricultural Water Management, Elsevier, vol. 97(1), pages 41-49, January.
    18. Minhas, P.S. & Qadir, Manzoor & Yadav, R.K., 2019. "Groundwater irrigation induced soil sodification and response options," Agricultural Water Management, Elsevier, vol. 215(C), pages 74-85.
    19. Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).
    20. Choudhary, O. P. & Josan, A. S. & Bajwa, M. S., 2001. "Yield and fibre quality of cotton cultivars as affected by the build-up of sodium in the soils with sustained sodic irrigations under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 49(1), pages 1-9, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:107:y:2012:i:c:p:14-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.