IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v102y2011i1p66-73.html
   My bibliography  Save this article

Estimating spatial mean soil water contents of sloping jujube orchards using temporal stability

Author

Listed:
  • Gao, Xiaodong
  • Wu, Pute
  • Zhao, Xining
  • Shi, Yinguang
  • Wang, Jiawen

Abstract

Estimating spatial mean soil water contents from point-scale measurements is important to improve soil water management in sloping land of semiarid areas. Temporal stability analysis, as a statistical technique to estimate soil water content, is an effective tool in terms of facilitating the upscaling estimation of mean values. The objective of this study was to examine temporal stability of soil water profiles (0–20, 20–40, 40–60 and 0–60cm) in sloping jujube (Zizyphus jujuba) orchards and to estimate field mean root-zone soil water based on temporal stability analysis in the Yuanzegou catchment of the Chinese Loess Plateau, using soil water observations under both dry and wet soil conditions. The results showed that different time-stable locations were identified for different depths and the temporal stability of soil water content in 20–40cm was significantly (P<0.05) weaker than that in other depths. Moreover, these time-stable locations had relatively high clay contents, relatively mild slopes and relatively planar surfaces compared to the corresponding field means. Statistical analysis revealed that the temporal stability of root zone soil water (0–60cm) was higher in either dry or wet season than that including both, and soil water exhibited very low temporal stability during the transition period from dry to wet. Based on the temporal stability analysis, field mean soil water contents were estimated reasonably (R2 from 0.9560 to 0.9873) from the point measurements of these time-stable locations. Since the terrains in this study are typical in the hilly regions of the Loess Plateau, the results presented here should improve soil water management in sloping orchards in the Loess Plateau.

Suggested Citation

  • Gao, Xiaodong & Wu, Pute & Zhao, Xining & Shi, Yinguang & Wang, Jiawen, 2011. "Estimating spatial mean soil water contents of sloping jujube orchards using temporal stability," Agricultural Water Management, Elsevier, vol. 102(1), pages 66-73.
  • Handle: RePEc:eee:agiwat:v:102:y:2011:i:1:p:66-73
    DOI: 10.1016/j.agwat.2011.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741100271X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Starr, G.C., 2005. "Assessing temporal stability and spatial variability of soil water patterns with implications for precision water management," Agricultural Water Management, Elsevier, vol. 72(3), pages 223-243, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Lei & Lv, Yujuan & Wang, Dongdong & Muhammad, Tahir & Biswas, Asim & Peng, Xinhua, 2016. "Soil water storage prediction at high space–time resolution along an agricultural hillslope," Agricultural Water Management, Elsevier, vol. 165(C), pages 122-130.
    2. Ma, Lihui & Wang, Xing & Gao, Zhiyong & Youke, Wang & Nie, Zhenyi & Liu, Xiaoli, 2019. "Canopy pruning as a strategy for saving water in a dry land jujube plantation in a loess hilly region of China," Agricultural Water Management, Elsevier, vol. 216(C), pages 436-443.
    3. Gao, Lei & Shao, Mingan, 2012. "Temporal stability of shallow soil water content for three adjacent transects on a hillslope," Agricultural Water Management, Elsevier, vol. 110(C), pages 41-54.
    4. Zhang, Baoqing & Wu, Pute & Zhao, Xining & Wang, Yubao & Wang, Jiawen & Shi, Yinguang, 2012. "Drought variation trends in different subregions of the Chinese Loess Plateau over the past four decades," Agricultural Water Management, Elsevier, vol. 115(C), pages 167-177.
    5. Song, Xiaolin & Wu, Pute & Gao, Xiaodong & Yao, Jie & Zou, Yufeng & Zhao, Xining & Siddique, Kadambot H.M. & Hu, Wei, 2020. "Rainwater collection and infiltration (RWCI) systems promote deep soil water and organic carbon restoration in water-limited sloping orchards," Agricultural Water Management, Elsevier, vol. 242(C).
    6. Chen, Dianyu & Wang, Youke & Liu, Shouyang & Wei, Xinguang & Wang, Xing, 2014. "Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 136(C), pages 23-33.
    7. Pan, Daili & Song, Yaqian & Dyck, Miles & Gao, Xiaodong & Wu, Pute & Zhao, Xining, 2017. "Effect of plant cover type on soil water budget and tree photosynthesis in jujube orchards," Agricultural Water Management, Elsevier, vol. 184(C), pages 135-144.
    8. Wang, Zikui & Cao, Quan & Shen, Yuying, 2019. "Modeling light availability for crop strips planted within apple orchard," Agricultural Systems, Elsevier, vol. 170(C), pages 28-38.
    9. Jia, Yu-Hua & Shao, Ming-An, 2013. "Temporal stability of soil water storage under four types of revegetation on the northern Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 117(C), pages 33-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Zhenjiang & Plauborg, Finn & Parsons, David & Andersen, Mathias Neumann, 2018. "Potato canopy growth, yield and soil water dynamics under different irrigation systems," Agricultural Water Management, Elsevier, vol. 202(C), pages 9-18.
    2. Gao, Lei & Shao, Mingan, 2012. "Temporal stability of shallow soil water content for three adjacent transects on a hillslope," Agricultural Water Management, Elsevier, vol. 110(C), pages 41-54.
    3. Reinhard NOLZ & Willibald LOISKANDL & Gerhard KAMMERER & Margarita L. HIMMELBAUER, 2016. "Survey of soil water distribution in a vineyard and implications for subsurface drip irrigation control," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(4), pages 250-258.
    4. Yetbarek, Ephrem & Ojha, Richa, 2020. "Spatio-temporal variability of soil moisture in a cropped agricultural plot within the Ganga Basin, India," Agricultural Water Management, Elsevier, vol. 234(C).
    5. de Souza, Edivan Rodrigues & Montenegro, Abelardo Antônio de Assunção & Montenegro, Suzana Maria Gico & de Matos, José de Arimatea, 2011. "Temporal stability of soil moisture in irrigated carrot crops in Northeast Brazil," Agricultural Water Management, Elsevier, vol. 99(1), pages 26-32.
    6. Hedley, C.B. & Yule, I.J., 2009. "A method for spatial prediction of daily soil water status for precise irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(12), pages 1737-1745, December.
    7. Jia, Yu-Hua & Shao, Ming-An, 2013. "Temporal stability of soil water storage under four types of revegetation on the northern Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 117(C), pages 33-42.
    8. Barker, J. Burdette & Franz, Trenton E. & Heeren, Derek M. & Neale, Christopher M.U. & Luck, Joe D., 2017. "Soil water content monitoring for irrigation management: A geostatistical analysis," Agricultural Water Management, Elsevier, vol. 188(C), pages 36-49.
    9. Ramírez-Cuesta, J.M. & Ortuño, M.F. & Gonzalez-Dugo, V. & Zarco-Tejada, P.J. & Parra, M. & Rubio-Asensio, J.S. & Intrigliolo, D.S., 2022. "Assessment of peach trees water status and leaf gas exchange using on-the-ground versus airborne-based thermal imagery," Agricultural Water Management, Elsevier, vol. 267(C).
    10. Reinhard NOLZ & Willibald LOISKANDL, 2017. "Evaluating soil water content data monitored at different locations in a vineyard with regard to irrigation control," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(3), pages 152-160.
    11. Starr, G.C. & Rowland, D. & Griffin, T.S. & Olanya, O.M., 2008. "Soil water in relation to irrigation, water uptake and potato yield in a humid climate," Agricultural Water Management, Elsevier, vol. 95(3), pages 292-300, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:102:y:2011:i:1:p:66-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.