IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v76y2003i3p1157-1181.html
   My bibliography  Save this article

Development of a soil-plant phosphorus simulation model for calcareous and weathered tropical soils

Author

Listed:
  • Daroub, Samira H.
  • Gerakis, Argyrios
  • Ritchie, Joe T.
  • Friesen, Dennis K.
  • Ryan, John

Abstract

No abstract is available for this item.

Suggested Citation

  • Daroub, Samira H. & Gerakis, Argyrios & Ritchie, Joe T. & Friesen, Dennis K. & Ryan, John, 2003. "Development of a soil-plant phosphorus simulation model for calcareous and weathered tropical soils," Agricultural Systems, Elsevier, vol. 76(3), pages 1157-1181, June.
  • Handle: RePEc:eee:agisys:v:76:y:2003:i:3:p:1157-1181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(02)00082-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz-Nogueira, B. & Boote, K. J. & Sau, F., 2001. "Calibration and use of CROPGRO-soybean model for improving soybean management under rainfed conditions," Agricultural Systems, Elsevier, vol. 68(2), pages 151-173, May.
    2. Pala, M. & Stockle, C. O. & Harris, H. C., 1996. "Simulation of durum wheat (Triticum turgidum ssp. durum) growth under different water and nitrogen regimes in a mediterranean environment using CropSyst," Agricultural Systems, Elsevier, vol. 51(2), pages 147-163, June.
    3. Xevi, E. & Gilley, J. & Feyen, J., 1996. "Comparative study of two crop yield simulation models," Agricultural Water Management, Elsevier, vol. 30(2), pages 155-173, April.
    4. Alocilja, Evangelyn C. & Ritchie, Joe T., 1990. "The application of SIMOPT2: RICE to evaluate profit and yield-risk in upland-rice production," Agricultural Systems, Elsevier, vol. 33(4), pages 315-326.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van der Laan, M. & Annandale, J.G. & Bristow, K.L. & Stirzaker, R.J. & Preez, C.C. du & Thorburn, P.J., 2014. "Modelling nitrogen leaching: Are we getting the right answer for the right reason?," Agricultural Water Management, Elsevier, vol. 133(C), pages 74-80.
    2. Dzotsi, K.A. & Jones, J.W. & Adiku, S.G.K. & Naab, J.B. & Singh, U. & Porter, C.H. & Gijsman, A.J., 2010. "Modeling soil and plant phosphorus within DSSAT," Ecological Modelling, Elsevier, vol. 221(23), pages 2839-2849.
    3. World Bank, 2011. "Improving Governance for Scaling up SLM in Mali," World Bank Publications - Reports 2751, The World Bank Group.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, P. & Aggarwal, P. K. & Bhatia, V. S. & Murty, M. V. R. & Pala, M. & Oweis, T. & Benli, B. & Rao, K. P. C. & Wani, S. P., 2009. "Yield gap analysis: modelling of achievable yields at farm level," IWMI Books, Reports H041995, International Water Management Institute.
    2. Benli, B. & Pala, M. & Stockle, C. & Oweis, T., 2007. "Assessment of winter wheat production under early sowing with supplemental irrigation in a cold highland environment using CropSyst simulation model," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 45-53, October.
    3. O'Neal, Monte R. & Frankenberger, Jane R. & Ess, Daniel R., 2002. "Use of CERES-Maize to study effect of spatial precipitation variability on yield," Agricultural Systems, Elsevier, vol. 73(2), pages 205-225, August.
    4. Rosa, Franco, 2012. "Planning the Sustainable Agro-fuel Supply Chain," 2012 First Congress, June 4-5, 2012, Trento, Italy 124130, Italian Association of Agricultural and Applied Economics (AIEAA).
    5. Aliasghar Montazar & Maliheh Mohseni, 2011. "Optimizing Wheat Water Productivity as Affected by Irrigation and Fertilizer-nitrogen Regimes in an Arid Environment," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 3(3), pages 143-143, September.
    6. Noemi Mancosu & Donatella Spano & Morteza Orang & Sara Sarreshteh & Richard Snyder, 2016. "SIMETAW# - a Model for Agricultural Water Demand Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 541-557, January.
    7. Kaur, Rajbir & Arora, VK, 2018. "Assessing spring maize responses to irrigation and nitrogen regimes in north-west India using CERES-Maize model," Agricultural Water Management, Elsevier, vol. 209(C), pages 171-177.
    8. Singh, Uttam Kumar & Ren, Li & Kang, Shaozhong, 2010. "Simulation of soil water in space and time using an agro-hydrological model and remote sensing techniques," Agricultural Water Management, Elsevier, vol. 97(8), pages 1210-1220, August.
    9. Montoya, F. & Camargo, D. & Domínguez, A. & Ortega, J.F. & Córcoles, J.I., 2018. "Parametrization of Cropsyst model for the simulation of a potato crop in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 203(C), pages 297-310.
    10. Montero Bulacio, Enrique & Romagnoli, Martín & Otegui, María E. & Chan, Raquel L. & Portapila, Margarita, 2023. "OSTRICH-CROPGRO multi-objective optimization methodology for calibration of the growing dynamics of a second-generation transgenic soybean tolerant to high temperatures and dry growing conditions," Agricultural Systems, Elsevier, vol. 205(C).
    11. Chowdary, V.M. & Rao, N.H. & Sarma, P.B.S., 2005. "Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects," Agricultural Water Management, Elsevier, vol. 75(3), pages 194-225, July.
    12. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    13. Abi Saab, Marie Therese & Todorovic, Mladen & Albrizio, Rossella, 2015. "Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?," Agricultural Water Management, Elsevier, vol. 147(C), pages 21-33.
    14. Noemi Mancosu & Donatella Spano & Morteza Orang & Sara Sarreshteh & Richard L. Snyder, 2016. "SIMETAW# - a Model for Agricultural Water Demand Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 541-557, January.
    15. Asadollah, Seyed Babak Haji Seyed & Jodar-Abellan, Antonio & Pardo, Miguel Ángel, 2024. "Optimizing machine learning for agricultural productivity: A novel approach with RScv and remote sensing data over Europe," Agricultural Systems, Elsevier, vol. 218(C).
    16. Liu, S. & Yang, J.Y. & Zhang, X.Y. & Drury, C.F. & Reynolds, W.D. & Hoogenboom, G., 2013. "Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China," Agricultural Water Management, Elsevier, vol. 123(C), pages 32-44.
    17. Lundström, Niklas L.P. & Zhang, Hong & Brännström, Åke, 2017. "Pareto-efficient biological pest control enable high efficacy at small costs," Ecological Modelling, Elsevier, vol. 364(C), pages 89-97.
    18. Kaur, Harsimran & Huggins, David R. & Carlson, Bryan & Stockle, Claudio & Nelson, Roger, 2022. "Dryland fallow vs flex-cropping decisions in inland Pacific Northwest of USA," Agricultural Systems, Elsevier, vol. 201(C).
    19. Singh, Anil Kumar & Tripathy, Rojalin & Chopra, Usha Kiran, 2008. "Evaluation of CERES-Wheat and CropSyst models for water-nitrogen interactions in wheat crop," Agricultural Water Management, Elsevier, vol. 95(7), pages 776-786, July.
    20. Salazar, M.R. & Hook, J.E. & Garcia y Garcia, A. & Paz, J.O. & Chaves, B. & Hoogenboom, G., 2012. "Estimating irrigation water use for maize in the Southeastern USA: A modeling approach," Agricultural Water Management, Elsevier, vol. 107(C), pages 104-111.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:76:y:2003:i:3:p:1157-1181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.