Exploration of the optimal low-carbon peanut rotation system in South China
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agsy.2024.104145
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Niu, Wenjuan & Han, Lujia & Liu, Xian & Huang, Guangqun & Chen, Longjian & Xiao, Weihua & Yang, Zengling, 2016. "Twenty-two compositional characterizations and theoretical energy potentials of extensively diversified China's crop residues," Energy, Elsevier, vol. 100(C), pages 238-250.
- John M. Antle & Jetse J. Stoorvogel, 2009. "Payments for Ecosystem Services, Poverty and Sustainability: The Case of Agricultural Soil Carbon Sequestration," Natural Resource Management and Policy, in: Leslie Lipper & Takumi Sakuyama & Randy Stringer & David Zilberman (ed.), Payment for Environmental Services in Agricultural Landscapes, chapter 7, pages 133-161, Springer.
- Yantai Gan & Chang Liang & Qiang Chai & Reynald L. Lemke & Con A. Campbell & Robert P. Zentner, 2014. "Improving farming practices reduces the carbon footprint of spring wheat production," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Ymène Fouli & Margot Hurlbert & Roland Kröbel, 2021. "Greenhouse Gas Emissions From Canadian Agriculture: Estimates and Measurements," SPP Briefing Papers, The School of Public Policy, University of Calgary, vol. 14(35), November.
- Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
- Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
- Liu, Jiazheng & Zhong, Fei & Niu, Wenjuan & Su, Jing & Gao, Ziqi & Zhang, Kai, 2019. "Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis," Energy, Elsevier, vol. 175(C), pages 320-332.
- Zi, Cao & Qian, Meng & Baozhong, Gao, 2021. "The consumption patterns and determining factors of rural household energy: A case study of Henan Province in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- He, Xinyan & Liu, Zhaoxia & Niu, Wenjuan & Yang, Li & Zhou, Tan & Qin, Di & Niu, Zhiyou & Yuan, Qiaoxia, 2018. "Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues," Energy, Elsevier, vol. 143(C), pages 746-756.
- Nisar, Shahida & Benbi, Dinesh Kumar & Toor, Amardeep Singh, 2021. "Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 229(C).
- De Leijster, V. & Verburg, R.W. & Santos, M.J. & Wassen, M.J. & Martínez-Mena, M. & de Vente, J. & Verweij, P.A., 2020. "Almond farm profitability under agroecological management in south-eastern Spain: Accounting for externalities and opportunity costs," Agricultural Systems, Elsevier, vol. 183(C).
- Liu, Tingting & Ferrari, Giovanni & Pezzuolo, Andrea & Alengebawy, Ahmed & Jin, Keda & Yang, Gaozhong & Li, Qiang & Ai, Ping, 2023. "Evaluation and analysis of biogas potential from agricultural waste in Hubei Province, China," Agricultural Systems, Elsevier, vol. 205(C).
- Shirley LAMPTEY & Lingling LI & Junhong XIE, 2018. "Impact of nitrogen fertilization on soil respiration and net ecosystem production in maize," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 353-360.
- Bai, Youshuai & Zhang, Hengjia & Jia, Shenghai & Huang, Caixia & Zhao, Xia & Wei, Huiqin & Yang, Shurui & Ma, Yan & Kou, Rui, 2022. "Plastic film mulching combined with sand tube irrigation improved yield, water use efficiency, and fruit quality of jujube in an arid desert area of Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
- Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S. & Sharma, Sandeep, 2021. "Energy optimization in wheat establishment following rice residue management with Happy Seeder technology for reduced carbon footprints in north-western India," Energy, Elsevier, vol. 230(C).
- Nancy Loria & Rattan Lal & Ranveer Chandra, 2024. "Handheld In Situ Methods for Soil Organic Carbon Assessment," Sustainability, MDPI, vol. 16(13), pages 1-33, June.
- Rebecca F. Graham & Sam E. Wortman & Cameron M. Pittelkow, 2017. "Comparison of Organic and Integrated Nutrient Management Strategies for Reducing Soil N 2 O Emissions," Sustainability, MDPI, vol. 9(4), pages 1-14, March.
- Fauzi, Akhmad & Anna, Zuzy, 2013. "The complexity of the institution of payment for environmental services: A case study of two Indonesian PES schemes," Ecosystem Services, Elsevier, vol. 6(C), pages 54-63.
- Di, Yunfei & Yang, Haibo & Hu, Yuncai & Li, Fei, 2024. "Integrating environmental footprints and ecosystem economic performance to evaluate nitrogen management in intensive drip-irrigated potato production," Agricultural Systems, Elsevier, vol. 221(C).
- Li, Jinkai & Gao, Ming & Luo, Erga & Wang, Jingyi & Zhang, Xuebiao, 2023. "Does rural energy poverty alleviation really reduce agricultural carbon emissions? The case of China," Energy Economics, Elsevier, vol. 119(C).
More about this item
Keywords
Carbon footprint (CF); Product carbon footprint (PCF); Peanut cropping system; Food carbon cost (FCC); Carbon sequestration efficiency; Ecosystem service value of C sequestration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:221:y:2024:i:c:s0308521x24002956. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.