IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v219y2024ics0308521x24002099.html
   My bibliography  Save this article

Integrating the land–water–climate nexus approach with spatial-based sustainable agriculture production

Author

Listed:
  • Keson, Jutaporn
  • Silalertruksa, Thapat
  • Gheewala, Shabbir H.

Abstract

A policy on agricultural land zoning, based on land suitability maps, has been introduced to optimize the use of resources for crop production in Thailand. However, the impact of activities occurring during cultivation in different land suitability classes has not been considered. A land–water–climate nexus index (LWCNI) has therefore been introduced as a holistic analysis that integrates three indicators––land-use intensity, water-use intensity, and climate change impact in terms of GHG emissions. This can guide resource allocation by highlighting areas that need improvement.

Suggested Citation

  • Keson, Jutaporn & Silalertruksa, Thapat & Gheewala, Shabbir H., 2024. "Integrating the land–water–climate nexus approach with spatial-based sustainable agriculture production," Agricultural Systems, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:agisys:v:219:y:2024:i:c:s0308521x24002099
    DOI: 10.1016/j.agsy.2024.104059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X24002099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2024.104059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heinze, Alan & Bongers, Frans & Ramírez Marcial, Neptalí & García Barrios, Luis E. & Kuyper, Thomas W., 2022. "Farm diversity and fine scales matter in the assessment of ecosystem services and land use scenarios," Agricultural Systems, Elsevier, vol. 196(C).
    2. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    3. Boonyanam, Nararuk, 2020. "Agricultural economic zones in Thailand," Land Use Policy, Elsevier, vol. 99(C).
    4. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    2. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    3. Liang Li & Ying Xiang & Xinyue Fan & Qinxiang Wang & Yang Wei, 2023. "Spatiotemporal Characteristics of Agricultural Production Efficiency in Sichuan Province from the Perspective of “Water–Land–Energy–Carbon” Coupling," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    4. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    5. Yujie Huang & Yang Su & Ruiliang Li & Haiqing He & Haiyan Liu & Feng Li & Qin Shu, 2019. "Study of the Spatio-Temporal Differentiation of Factors Influencing Carbon Emission of the Planting Industry in Arid and Vulnerable Areas in Northwest China," IJERPH, MDPI, vol. 17(1), pages 1-14, December.
    6. Ming Chang & Xiaotong Li & Fei Li & Hesen Zhao, 2024. "Impact of Farmers’ Livelihoods on Agricultural Carbon Emission Efficiency Under the Background of Population Urbanization: Evidence from China," Agriculture, MDPI, vol. 14(12), pages 1-16, December.
    7. Gao, Feng & He, Ziwen, 2024. "Digital economy, land resource misallocation and urban carbon emissions in Chinese resource-based cities," Resources Policy, Elsevier, vol. 91(C).
    8. Min Zhou & Bixia Hu, 2020. "Decoupling of carbon emissions from agricultural land utilisation from economic growth in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(11), pages 510-518.
    9. Xiangxue Han & Meichen Fu & Jingheng Wang & Sijia Li, 2024. "Optimizing Territorial Spatial Structures within the Framework of Carbon Neutrality: A Case Study of Wuan," Land, MDPI, vol. 13(8), pages 1-24, July.
    10. Yun Tian & Rui Wang & Minhao Yin & Huijie Zhang, 2023. "Study on the Measurement and Influencing Factors of Rural Energy Carbon Emission Efficiency in China: Evidence Using the Provincial Panel Data," Agriculture, MDPI, vol. 13(2), pages 1-16, February.
    11. Shulong Li & Zhizhang Wang, 2023. "Time, Spatial and Component Characteristics of Agricultural Carbon Emissions of China," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    12. Feng, Yingjie & Zhu, Aikong & Wang, Jingya & Xia, Ke & Liu, Zhenglan, 2023. "Study on the low-carbon development under a resources-dependent framework of water-land -energy utilization: Evidence from the Yellow River Basin, China," Energy, Elsevier, vol. 280(C).
    13. Jiao, Fengli & Ding, Risheng & Du, Taisheng & Kang, Jian & Tong, Ling & Gao, Jia & Shao, Jie, 2024. "Multi-growth stage regulated deficit irrigation improves maize water productivity in an arid region of China," Agricultural Water Management, Elsevier, vol. 297(C).
    14. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    15. Zhou, Yiqi & Zou, Shan & Duan, Weili & Chen, Yaning & Takara, Kaoru & Di, Yanfeng, 2022. "Analysis of energy carbon emissions from agroecosystems in Tarim River Basin, China: A pathway to achieve carbon neutrality," Applied Energy, Elsevier, vol. 325(C).
    16. Wenyuan Jiang & Zhenxiang Zeng & Zhengyun Zhang & Yichen Zhao, 2022. "Regulation and Optimization of Urban Water and Land Resources Utilization for Low Carbon Development: A Case Study of Tianjin, China," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    17. Huanyu Chang & Bing Zhang & Jingyan Han & Yong Zhao & Yongqiang Cao & Jiaqi Yao & Linrui Shi, 2024. "Evaluation of the Coupling Coordination and Sustainable Development of Water–Energy–Land–Food System on a 40-Year Scale: A Case Study of Hebei, China," Land, MDPI, vol. 13(7), pages 1-21, July.
    18. Zigao He, 2023. "The Water–Energy–Carbon Coupling Coordination Level in China," Sustainability, MDPI, vol. 16(1), pages 1-15, December.
    19. Min Wang & Yiming An & Rupu Yang & Xiaoyu Shan & Liping Li & Xiangzhao Feng, 2024. "Analysis of the Coupling Coordinated Development of the Water-Soil-Energy-Carbon System in Northwest China," Land, MDPI, vol. 13(5), pages 1-16, May.
    20. Li, Long & Huang, Xianjin & Yang, Hong, 2023. "Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target," Land Use Policy, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:219:y:2024:i:c:s0308521x24002099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.