IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v203y2022ics0308521x22001330.html
   My bibliography  Save this article

Ag-IoT for crop and environment monitoring: Past, present, and future

Author

Listed:
  • Chamara, Nipuna
  • Islam, Md Didarul
  • Bai, Geng (Frank)
  • Shi, Yeyin
  • Ge, Yufeng

Abstract

Automated monitoring of the soil-plant-atmospheric continuum at a high spatiotemporal resolution is a key to transform the labor-intensive, experience-based decision making to an automatic, data-driven approach in agricultural production. Growers could make better management decisions by leveraging the real-time field data while researchers could utilize these data to answer key scientific questions. Traditionally, data collection in agricultural fields, which largely relies on human labor, can only generate limited numbers of data points with low resolution and accuracy. During the last two decades, crop monitoring has drastically evolved with the advancement of modern sensing technologies. Most importantly, the introduction of IoT (Internet of Things) into crop, soil, and microclimate sensing has transformed crop monitoring into a quantitative and data-driven work from a qualitative and experience-based task.

Suggested Citation

  • Chamara, Nipuna & Islam, Md Didarul & Bai, Geng (Frank) & Shi, Yeyin & Ge, Yufeng, 2022. "Ag-IoT for crop and environment monitoring: Past, present, and future," Agricultural Systems, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:agisys:v:203:y:2022:i:c:s0308521x22001330
    DOI: 10.1016/j.agsy.2022.103497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X22001330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2022.103497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dora Cama-Pinto & Miguel Damas & Juan Antonio Holgado-Terriza & Francisco Gómez-Mula & Alejandro Cama-Pinto, 2019. "Path Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato Greenhouse," IJERPH, MDPI, vol. 16(10), pages 1-15, May.
    2. Fukase, Emiko & Martin, Will, 2020. "Economic growth, convergence, and world food demand and supply," World Development, Elsevier, vol. 132(C).
    3. Alderfasi, Ali Abdullah & Nielsen, David C., 2001. "Use of crop water stress index for monitoring water status and scheduling irrigation in wheat," Agricultural Water Management, Elsevier, vol. 47(1), pages 69-75, February.
    4. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    5. Ouyang, Zan & Tian, Juncang & Yan, Xinfang & Shen, Hui, 2020. "Effects of different concentrations of dissolved oxygen or temperatures on the growth, photosynthesis, yield and quality of lettuce," Agricultural Water Management, Elsevier, vol. 228(C).
    6. Wolfert, Sjaak & Ge, Lan & Verdouw, Cor & Bogaardt, Marc-Jeroen, 2017. "Big Data in Smart Farming – A review," Agricultural Systems, Elsevier, vol. 153(C), pages 69-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piancharoenwong, Assanee & Badir, Yuosre F., 2024. "IoT smart farming adoption intention under climate change: The gain and loss perspective," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    2. Wu, Menglong & Xiong, Jiajie & Li, Ruoyu & Dong, Aihong & Lv, Chang & Sun, Dan & Abdelghany, Ahmed Elsayed & Zhang, Qian & Wang, Yaqiong & Siddique, Kadambot H.M. & Niu, Wenquan, 2024. "Precision forecasting of fertilizer components’ concentrations in mixed variable-rate fertigation through machine learning," Agricultural Water Management, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    2. Piancharoenwong, Assanee & Badir, Yuosre F., 2024. "IoT smart farming adoption intention under climate change: The gain and loss perspective," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    3. Lin Xie & Biliang Luo & Wenjing Zhong, 2021. "How Are Smallholder Farmers Involved in Digital Agriculture in Developing Countries: A Case Study from China," Land, MDPI, vol. 10(3), pages 1-16, March.
    4. Rommel, Jens & Anggraini, Eva, 2018. "Spatially explicit framed field experiments on ecosystem services governance," Ecosystem Services, Elsevier, vol. 34(PB), pages 201-205.
    5. Oliver Falck & Johannes Koenen, 2020. "Rohstoff „Daten“: Volkswirtschaflicher Nutzen von Datenbereitstellung – eine Bestandsaufnahme," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 113, September.
    6. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitalization of the agricultural sector: the impact of ICT on the development of enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    7. Huo, Dongyang & Malik, Asad Waqar & Ravana, Sri Devi & Rahman, Anis Ur & Ahmedy, Ismail, 2024. "Mapping smart farming: Addressing agricultural challenges in data-driven era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    9. Pigford, Ashlee-Ann E. & Hickey, Gordon M. & Klerkx, Laurens, 2018. "Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions," Agricultural Systems, Elsevier, vol. 164(C), pages 116-121.
    10. Tianyu Qin & Lijun Wang & Yanxin Zhou & Liyue Guo & Gaoming Jiang & Lei Zhang, 2022. "Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
    11. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.
    12. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    13. Ongolo, Symphorien & Giessen, Lukas & Karsenty, Alain & Tchamba, Martin & Krott, Max, 2021. "Forestland policies and politics in Africa: Recent evidence and new challenges," Forest Policy and Economics, Elsevier, vol. 127(C).
    14. Marcela Prokopová & Luca Salvati & Gianluca Egidi & Ondřej Cudlín & Renata Včeláková & Radek Plch & Pavel Cudlín, 2019. "Envisioning Present and Future Land-Use Change under Varying Ecological Regimes and Their Influence on Landscape Stability," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    15. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    16. Viet, Nguyen Quoc & Behdani, Behzad & Bloemhof, Jacqueline, 2018. "Value of Information to Improve Daily Operations in High-Density Logistics," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 9(1), January.
    17. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitization of the Agricultural Sector: The Impact of ICT on the Development of Enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), January.
    18. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    19. Abdulai, Issaka & Hoffmann, Munir P. & Jassogne, Laurence & Asare, Richard & Graefe, Sophie & Tao, Hsiao-Hang & Muilerman, Sander & Vaast, Philippe & Van Asten, Piet & Läderach, Peter & Rötter, Reimun, 2020. "Variations in yield gaps of smallholder cocoa systems and the main determining factors along a climate gradient in Ghana," Agricultural Systems, Elsevier, vol. 181(C).
    20. Qian Sun & Mingjie Wu & Peiyu Du & Wei Qi & Xinyang Yu, 2022. "Spatial Layout Optimization and Simulation of Cultivated Land Based on the Life Community Theory in a Mountainous and Hilly Area of China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:203:y:2022:i:c:s0308521x22001330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.