IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v185y2020ics0308521x20307964.html
   My bibliography  Save this article

Plant diseases in afforested crop-livestock systems in Brazil

Author

Listed:
  • Roese, Alexandre Dinnys
  • Zielinski, Erica Camila
  • May De Mio, Louise Larissa

Abstract

Integrated crop-livestock systems (ICLS) include diversified agricultural practices, like crops and animals grazing in the same area and frequently with afforestation. A return to these practices has been proposed in recent years, aiming to reach some benefits that may include a reduction in plant diseases, one of the main constraints in Brazilian crops. However, these benefits rely mainly on the resilience and the self-regulating capacity of the systems, and practical examples of the influence of ICLS on plant diseases are still scarce. The objective of the present work is to show how ICLS arrangements can reduce plant diseases. We carried out a four years investigation on soybean and corn diseases in agropastoral (AP) and agrosilvopastoral (ASP) systems, compared to a non-integrated control (CO), in a long-term field experiment established in 2006 in the region of Campos Gerais, Paraná state, Brazil. The tree component of the ASP system was eucalyptus and silver oak. Soybean and corn were cultivated alternately as summer crops, and the natural occurrence of diseases evaluated from 2012 to 2015 sowings. Results show that the agricultural diversification promoted by ICLS can reduce foliar diseases intensity, and the ASP system showed the best results. The rust severity was 28.2 and 34.2% in ASP and AP systems in 2012, and 8.5 and 12.4% in ASP and AP in 2014. White-spot severity was 1.6, 2.2, and 3.1% in ASP, AP, and CO systems in 2013, and 0.6, 1.3, and 1.3% in ASP, AP, and CO in 2015. Other diseases, like downy-mildew on soybean and gray-leaf-spot on corn, were also less severe in ASP compared to other systems. Micrometeorological variables recorded inside soybean and corn canopy contributed to understanding the influence of ICLS arrangements on plant diseases, allowing concluding that microclimate is the main drive influencing disease reduction in the aerial part of crops in ICLS. The ICLS, mainly the agrosilvopastoral system, pose as a less diseases susceptible and consequently an environmentally friendly system. Knowing the requirements of the pathogens of a crop species is fundamental in planning a production system, avoiding or minimizing risks. The influence of trees on plant diseases of afforested production systems is discussed.

Suggested Citation

  • Roese, Alexandre Dinnys & Zielinski, Erica Camila & May De Mio, Louise Larissa, 2020. "Plant diseases in afforested crop-livestock systems in Brazil," Agricultural Systems, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:agisys:v:185:y:2020:i:c:s0308521x20307964
    DOI: 10.1016/j.agsy.2020.102935
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X20307964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2020.102935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thornton, P. K. & Herrero, M., 2001. "Integrated crop-livestock simulation models for scenario analysis and impact assessment," Agricultural Systems, Elsevier, vol. 70(2-3), pages 581-602.
    2. Ananda Y Bandara & Dilooshi K Weerasooriya & Carl A Bradley & Tom W Allen & Paul D Esker, 2020. "Dissecting the economic impact of soybean diseases in the United States over two decades," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-28, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schreefel, L. & de Boer, I.J.M. & Timler, C.J. & Groot, J.C.J. & Zwetsloot, M.J. & Creamer, R.E. & Schrijver, A. Pas & van Zanten, H.H.E. & Schulte, R.P.O., 2022. "How to make regenerative practices work on the farm: A modelling framework," Agricultural Systems, Elsevier, vol. 198(C).
    2. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    3. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    4. Rachael D. Garrett & Meredith Niles & Juliana Gil & Philip Dy & Julio Reis & Judson Valentim, 2017. "Policies for Reintegrating Crop and Livestock Systems: A Comparative Analysis," Sustainability, MDPI, vol. 9(3), pages 1-22, March.
    5. Cortez-Arriola, José & Groot, Jeroen C.J. & Rossing, Walter A.H. & Scholberg, Johannes M.S. & Améndola Massiotti, Ricardo D. & Tittonell, Pablo, 2016. "Alternative options for sustainable intensification of smallholder dairy farms in North-West Michoacán, Mexico," Agricultural Systems, Elsevier, vol. 144(C), pages 22-32.
    6. Dorin, Bruno & Joly, Pierre-Benoît, 2020. "Modelling world agriculture as a learning machine? From mainstream models to Agribiom 1.0," Land Use Policy, Elsevier, vol. 96(C).
    7. McDonald, C.K. & MacLeod, N.D. & Lisson, S. & Corfield, J.P., 2019. "The Integrated Analysis Tool (IAT) – A model for the evaluation of crop-livestock and socio-economic interventions in smallholder farming systems," Agricultural Systems, Elsevier, vol. 176(C).
    8. Sheng Hang & Jing Li & Xiangbo Xu & Yun Lyu & Yang Li & Huarui Gong & Yan Xu & Zhu Ouyang, 2021. "An Optimization Scheme of Balancing GHG Emission and Income in Circular Agriculture System," Sustainability, MDPI, vol. 13(13), pages 1-15, June.
    9. Mahamadou Belem & Sansa Youl & Raphael Manlay & Bruno Barbier & Christophe Lepage, 2000. "MIROT: A multi-Agent System Model for the Simulation of the Dynamics of Carbon Resources of West-African Village Territories," Regional and Urban Modeling 283600008, EcoMod.
    10. Seungki Lee & GianCarlo Moschini, 2022. "On the value of innovation and extension information: SCN‐resistant soybean varieties," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1177-1202, August.
    11. Lavanya, B.T., 2021. "Modelling Micro Level Decisions of Sugarcane Farmers- a Neuro-Fuzzy Approach," 2021 Conference, August 17-31, 2021, Virtual 315878, International Association of Agricultural Economists.
    12. Rigolot, C. & de Voil, P. & Douxchamps, S. & Prestwidge, D. & Van Wijk, M. & Thornton, P.K. & Rodriguez, D. & Henderson, B. & Medina, D. & Herrero, M., 2017. "Interactions between intervention packages, climatic risk, climate change and food security in mixed crop–livestock systems in Burkina Faso," Agricultural Systems, Elsevier, vol. 151(C), pages 217-224.
    13. Claessens, L. & Stoorvogel, J.J. & Antle, J.M., 2008. "Ex ante assessment of dual-purpose sweet potato in the crop-livestock system of western Kenya: A minimum-data approach," Agricultural Systems, Elsevier, vol. 99(1), pages 13-22, December.
    14. Rao, Elizaphan J. O. & Omondi, Immaculate & Karimov, Aziz A. & Baltenweck, Isavelle, 2016. "Dairy farm households, processor linkages and household income: the case of dairy hub linkages in East Africa," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 19(4), October.
    15. Herrero, M. & Gonzalez-Estrada, E. & Thornton, P.K. & Quiros, C. & Waithaka, M.M. & Ruiz, R. & Hoogenboom, G., 2007. "IMPACT: Generic household-level databases and diagnostics tools for integrated crop-livestock systems analysis," Agricultural Systems, Elsevier, vol. 92(1-3), pages 240-265, January.
    16. Descheemaeker, K. & Bunting, S. W. & Bindraban, P. & Muthuri, C. & Molden, D. & Beveridge, M. & van Brakel, Martin & Herrero, M. & Clement, Floriane & Boelee, Eline & Jarvis, D. I., 2013. "Increasing water productivity in Agriculture," Book Chapters,, International Water Management Institute.
    17. Hansen, James W., 2002. "Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges," Agricultural Systems, Elsevier, vol. 74(3), pages 309-330, December.
    18. Ahmad Romadhoni Surya Putra, R. & Liu, Zhen & Lund, Mogens, 2017. "The impact of biogas technology adoption for farm households – Empirical evidence from mixed crop and livestock farming systems in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1371-1378.
    19. Tittonell, P. & van Wijk, M.T. & Rufino, M.C. & Vrugt, J.A. & Giller, K.E., 2007. "Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega district, western Kenya," Agricultural Systems, Elsevier, vol. 95(1-3), pages 76-95, December.
    20. Buysse, J. & Van Huylenbroeck, G. & Vanslembrouck, I. & Vanrolleghem, P., 2005. "Simulating the influence of management decisions on the nutrient balance of dairy farms," Agricultural Systems, Elsevier, vol. 86(3), pages 333-348, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:185:y:2020:i:c:s0308521x20307964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.