IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v144y2016icp22-32.html
   My bibliography  Save this article

Alternative options for sustainable intensification of smallholder dairy farms in North-West Michoacán, Mexico

Author

Listed:
  • Cortez-Arriola, José
  • Groot, Jeroen C.J.
  • Rossing, Walter A.H.
  • Scholberg, Johannes M.S.
  • Améndola Massiotti, Ricardo D.
  • Tittonell, Pablo

Abstract

Although Mexico aims to be self-sufficient in milk, domestic prices for milk are low due to trade liberalization, which resulted in imports of large amounts of milk powder, mainly from the United States. This situation threatens the livelihoods of smallholder dairy farmers. With varying success, farmers have tried to increase revenues by intensifying production through increased purchase of concentrates and production per cow, but this also resulted in substantial environmental problems. In this paper we combine a whole-farm model with data from representative pilot farms to explore alternative intensification options that more adequately can support the multi-objective setting of smallholders. Pilot dairy farms were defined in two categories: family-based (FB) and semi-specialized (SS), each at three levels of intensification: extensive (E, <0.8LUha−1), medium-intensive (M, >0.8 and <1.2LUha−1), and intensive (I, >1.2LUha−1). We aimed to explore management alternatives that enhance farm economic performance, while improving resource use efficiency and reducing negative environmental impacts. For each of the six pilot farms a large set of Pareto-optimal farm configurations was generated using the whole farm model in combination with an evolutionary algorithm. Applying a multivariate analysis, the sets of alternatives were classified in three functional groups that respectively aimed to: a) maximize profitability (‘economic’), b) maximize organic matter (OM) balance (‘environmental’), and c) minimize labor used, N balance and feeding costs (‘integrated’). Intensive (FBI, SSI) and large (SSM) farms had the widest ranges of opportunities for change, mainly to maximize profitability and/or OM balance, and to minimize N balance. Synergies were found between maximizing profitability and minimizing feed costs, and for minimizing both feed costs and N balance; trade-offs occurred for OM balance with feed costs and N balance. When comparing the current farm performance with the sets of alternatives, farms performed already well in terms of N and labor balances, whereas the largest scope for improvement was found for increasing OM balances. The results showed that just re-allocating the current resources might by itself lead to economic, social and/or environmental improvements for smallholder dairy farms.

Suggested Citation

  • Cortez-Arriola, José & Groot, Jeroen C.J. & Rossing, Walter A.H. & Scholberg, Johannes M.S. & Améndola Massiotti, Ricardo D. & Tittonell, Pablo, 2016. "Alternative options for sustainable intensification of smallholder dairy farms in North-West Michoacán, Mexico," Agricultural Systems, Elsevier, vol. 144(C), pages 22-32.
  • Handle: RePEc:eee:agisys:v:144:y:2016:i:c:p:22-32
    DOI: 10.1016/j.agsy.2016.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X1630018X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2016.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thornton, P. K. & Herrero, M., 2001. "Integrated crop-livestock simulation models for scenario analysis and impact assessment," Agricultural Systems, Elsevier, vol. 70(2-3), pages 581-602.
    2. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    3. De Vries, J.W. & Groenestein, C.M. & Schröder, J.J. & Hoogmoed, W.B. & Sukkel, W. & Groot Koerkamp, P.W.G. & De Boer, I.J.M., 2015. "Integrated manure management to reduce environmental impact: II. Environmental impact assessment of strategies," Agricultural Systems, Elsevier, vol. 138(C), pages 88-99.
    4. Doole, Graeme J. & Romera, Alvaro J., 2015. "Trade-offs between profit, production, and environmental footprint on pasture-based dairy farms in the Waikato region of New Zealand," Agricultural Systems, Elsevier, vol. 141(C), pages 14-23.
    5. Cortez-Arriola, José & Groot, Jeroen C.J. & Améndola Massiotti, Ricardo D. & Scholberg, Johannes M.S. & Valentina Mariscal Aguayo, D. & Tittonell, Pablo & Rossing, Walter A.H., 2014. "Resource use efficiency and farm productivity gaps of smallholder dairy farming in North-west Michoacán, Mexico," Agricultural Systems, Elsevier, vol. 126(C), pages 15-24.
    6. Castelan-Ortega, Octavio A. & Fawcett, Roy H. & Arriaga-Jordan, Carlos & Herrero, Mario, 2003. "A Decision Support System for smallholder campesino maize-cattle production systems of the Toluca Valley in Central Mexico. Part II--Emulating the farming system," Agricultural Systems, Elsevier, vol. 75(1), pages 23-46, January.
    7. Hutchings, Timothy R. & Nordblom, Thomas L., 2011. "A financial analysis of the effect of the mix of crop and sheep enterprises on the risk profile of dryland farms in south-eastern Australia," AFBM Journal, Australasian Farm Business Management Network, vol. 8(1), pages 1-23, October.
    8. Hutchings, Timothy R. & Nordblom, Thomas L., 2011. "A financial analysis of the effect of the mix of crop and sheep enterprises on the risk profile of dryland farms in south-eastern Australia," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 101405, Australian Agricultural and Resource Economics Society.
    9. Groot, Jeroen C.J. & Oomen, Gerard J.M. & Rossing, Walter A.H., 2012. "Multi-objective optimization and design of farming systems," Agricultural Systems, Elsevier, vol. 110(C), pages 63-77.
    10. Cortez-Arriola, José & Rossing, Walter A.H. & Massiotti, Ricardo D. Améndola & Scholberg, Johannes M.S. & Groot, Jeroen C.J. & Tittonell, Pablo, 2015. "Leverages for on-farm innovation from farm typologies? An illustration for family-based dairy farms in north-west Michoacán, Mexico," Agricultural Systems, Elsevier, vol. 135(C), pages 66-76.
    11. Tittonell, P. & van Wijk, M.T. & Rufino, M.C. & Vrugt, J.A. & Giller, K.E., 2007. "Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega district, western Kenya," Agricultural Systems, Elsevier, vol. 95(1-3), pages 76-95, December.
    12. Franklin Egan, J. & Hafla, Aimee & Goslee, Sarah, 2015. "Tradeoffs between production and perennial vegetation in dairy farming systems vary among counties in the northeastern U.S," Agricultural Systems, Elsevier, vol. 139(C), pages 17-28.
    13. Westphal, P. J. & Lanyon, L. E. & Partenheimer, E. J., 1989. "Plant nutrient management strategy implications for optimal herd size and performance of a simulated dairy farm," Agricultural Systems, Elsevier, vol. 31(4), pages 381-394.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Epper, C.A. & Paul, B. & Burra, D. & Phengsavanh, P. & Ritzema, R. & Syfongxay, C. & Groot, J.C.J. & Six, J. & Frossard, E. & Oberson, A. & Douxchamps, S., 2020. "Nutrient flows and intensification options for smallholder farmers of the Lao uplands," Agricultural Systems, Elsevier, vol. 177(C).
    2. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    3. Ashisa K. Prusty & Ravisankar Natesan & Azad S. Panwar & Mangi L. Jat & Jagdish P. Tetarwal & Santiago López-Ridaura & Roos Adelhart Toorop & Jelle van den Akker & Jashanjot Kaur & Prakash C. Ghasal &, 2022. "Redesigning of Farming Systems Using a Multi-Criterion Assessment Tool for Sustainable Intensification and Nutritional Security in Northwestern India," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    4. Ditzler, Lenora & Klerkx, Laurens & Chan-Dentoni, Jacqueline & Posthumus, Helena & Krupnik, Timothy J. & Ridaura, Santiago López & Andersson, Jens A. & Baudron, Frédéric & Groot, Jeroen C.J., 2018. "Affordances of agricultural systems analysis tools: A review and framework to enhance tool design and implementation," Agricultural Systems, Elsevier, vol. 164(C), pages 20-30.
    5. Jeroen C. J. Groot & José Cortez-Arriola & Walter A. H. Rossing & Ricardo D. Améndola Massiotti & Pablo Tittonell, 2016. "Capturing Agroecosystem Vulnerability and Resilience," Sustainability, MDPI, vol. 8(11), pages 1-12, November.
    6. Xabier Díaz de Otálora & Agustín del Prado & Federico Dragoni & Fernando Estellés & Barbara Amon, 2021. "Evaluating Three-Pillar Sustainability Modelling Approaches for Dairy Cattle Production Systems," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    7. Marques, J.G.O. & de Oliveira Silva, R. & Barioni, L.G. & Hall, J.A.J. & Fossaert, C. & Tedeschi, L.O. & Garcia-Launay, F. & Moran, D., 2022. "Evaluating environmental and economic trade-offs in cattle feed strategies using multiobjective optimization," Agricultural Systems, Elsevier, vol. 195(C).
    8. Ditzler, Lenora & Komarek, Adam M. & Chiang, Tsai-Wei & Alvarez, Stéphanie & Chatterjee, Shantonu Abe & Timler, Carl & Raneri, Jessica E. & Carmona, Natalia Estrada & Kennedy, Gina & Groot, Jeroen C.J, 2019. "A model to examine farm household trade-offs and synergies with an application to smallholders in Vietnam," Agricultural Systems, Elsevier, vol. 173(C), pages 49-63.
    9. Wies, Germán & Groot, Jeroen C.J. & Martinez-Ramos, Miguel, 2023. "In highly-biodiverse tropical landscapes, multiple-objective optimization reveals opportunities for increasing both conservation and agricultural production," Ecological Modelling, Elsevier, vol. 483(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    2. McDonald, C.K. & MacLeod, N.D. & Lisson, S. & Corfield, J.P., 2019. "The Integrated Analysis Tool (IAT) – A model for the evaluation of crop-livestock and socio-economic interventions in smallholder farming systems," Agricultural Systems, Elsevier, vol. 176(C).
    3. Ashisa K. Prusty & Ravisankar Natesan & Azad S. Panwar & Mangi L. Jat & Jagdish P. Tetarwal & Santiago López-Ridaura & Roos Adelhart Toorop & Jelle van den Akker & Jashanjot Kaur & Prakash C. Ghasal &, 2022. "Redesigning of Farming Systems Using a Multi-Criterion Assessment Tool for Sustainable Intensification and Nutritional Security in Northwestern India," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    4. Jeroen C. J. Groot & José Cortez-Arriola & Walter A. H. Rossing & Ricardo D. Améndola Massiotti & Pablo Tittonell, 2016. "Capturing Agroecosystem Vulnerability and Resilience," Sustainability, MDPI, vol. 8(11), pages 1-12, November.
    5. Schreefel, L. & de Boer, I.J.M. & Timler, C.J. & Groot, J.C.J. & Zwetsloot, M.J. & Creamer, R.E. & Schrijver, A. Pas & van Zanten, H.H.E. & Schulte, R.P.O., 2022. "How to make regenerative practices work on the farm: A modelling framework," Agricultural Systems, Elsevier, vol. 198(C).
    6. Groot, Jeroen C.J. & Oomen, Gerard J.M. & Rossing, Walter A.H., 2012. "Multi-objective optimization and design of farming systems," Agricultural Systems, Elsevier, vol. 110(C), pages 63-77.
    7. Nordblom, Thomas L. & Penfold, Chris & Weckert, Melanie & Norton, Mark R., 2017. "Straw and living mulches compared with herbicide for under-vine weed control in a Public-Private Benefit Framework," 2017 Conference (61st), February 7-10, 2017, Brisbane, Australia 258677, Australian Agricultural and Resource Economics Society.
    8. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    9. Perrett, Edward, 2015. "Are We Killing the Golden Sheep? The Changing Size and Composition of the Australian Sheep Flock: Implications for Production and Profitability," Papers 234412, University of Melbourne, Melbourne School of Land and Environment.
    10. Sheng Hang & Jing Li & Xiangbo Xu & Yun Lyu & Yang Li & Huarui Gong & Yan Xu & Zhu Ouyang, 2021. "An Optimization Scheme of Balancing GHG Emission and Income in Circular Agriculture System," Sustainability, MDPI, vol. 13(13), pages 1-15, June.
    11. Nordblom, Thomas L. & Hutchings, Timothy R. & Hayes, Richard C. & Li, Guangdi D., 2015. "A Framework for Modelling Whole-Farm Financial Risk," 2015 Conference (59th), February 10-13, 2015, Rotorua, New Zealand 202581, Australian Agricultural and Resource Economics Society.
    12. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    13. Herrero, M. & Gonzalez-Estrada, E. & Thornton, P.K. & Quiros, C. & Waithaka, M.M. & Ruiz, R. & Hoogenboom, G., 2007. "IMPACT: Generic household-level databases and diagnostics tools for integrated crop-livestock systems analysis," Agricultural Systems, Elsevier, vol. 92(1-3), pages 240-265, January.
    14. Kingwell, Ross & Islam, Nazrul & Xayavong, Vilaphonh, 2020. "Farming systems and their business strategies in south-western Australia: A decadal assessment of their profitability," Agricultural Systems, Elsevier, vol. 181(C).
    15. Tittonell, P. & van Wijk, M.T. & Rufino, M.C. & Vrugt, J.A. & Giller, K.E., 2007. "Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega district, western Kenya," Agricultural Systems, Elsevier, vol. 95(1-3), pages 76-95, December.
    16. Ditzler, Lenora & Klerkx, Laurens & Chan-Dentoni, Jacqueline & Posthumus, Helena & Krupnik, Timothy J. & Ridaura, Santiago López & Andersson, Jens A. & Baudron, Frédéric & Groot, Jeroen C.J., 2018. "Affordances of agricultural systems analysis tools: A review and framework to enhance tool design and implementation," Agricultural Systems, Elsevier, vol. 164(C), pages 20-30.
    17. Sosheel S. Godfrey & Thomas Nordblom & Ryan H. L. Ip & Susan Robertson & Timothy Hutchings & Karl Behrendt, 2021. "Drought Shocks and Gearing Impacts on the Profitability of Sheep Farming," Agriculture, MDPI, vol. 11(4), pages 1-19, April.
    18. Ronner, E. & Descheemaeker, K. & Marinus, W. & Almekinders, C.J.M. & Ebanyat, P. & Giller, K.E., 2018. "How do climbing beans fit in farming systems of the eastern highlands of Uganda? Understanding opportunities and constraints at farm level," Agricultural Systems, Elsevier, vol. 165(C), pages 97-110.
    19. González-Estrada, Ernesto & Rodriguez, Luis C. & Walen, Valerie K. & Naab, Jesse B. & Koo, Jawoo & Jones, James W. & Herrero, Mario & Thornton, Philip K., 2008. "Carbon sequestration and farm income in West Africa: Identifying best management practices for smallholder agricultural systems in northern Ghana," Ecological Economics, Elsevier, vol. 67(3), pages 492-502, October.
    20. Zingore, S. & González-Estrada, E. & Delve, R.J. & Herrero, M. & Dimes, J.P. & Giller, K.E., 2009. "An integrated evaluation of strategies for enhancing productivity and profitability of resource-constrained smallholder farms in Zimbabwe," Agricultural Systems, Elsevier, vol. 101(1-2), pages 57-68, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:144:y:2016:i:c:p:22-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.