IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v161y2018icp61-71.html
   My bibliography  Save this article

Identifying viable nutrient management interventions at the farm level: The case of smallholder organic Basmati rice production in Uttarakhand, India

Author

Listed:
  • Ditzler, L.
  • Breland, T.A.
  • Francis, C.
  • Chakraborty, M.
  • Singh, D.K.
  • Srivastava, A.
  • Eyhorn, F.
  • Groot, J.C.J.
  • Six, J.
  • Decock, C.

Abstract

Smallholder farmers may gain notable livelihood benefits by participating in organic value chains. However, whether there are enough resources available to maintain organic production sustainably on smallholder farms in resource-poor regions is of concern. If not balanced by sufficient inputs, continual nutrient export via commodity crops will result in nutrient mining, and livelihood improvements gained by participating in profitable value chains could be negated by soil degradation in the long term. The objectives of this study were to test an integrated approach for understanding the farm-level impacts of subsystem nutrient management actions and to identify locally viable interventions for increased nutrient supply and recycling. We employ a systems analysis methodology to address the nutrient gaps on smallholder farms in Uttarakhand, India producing organic Basmati rice for an international value chain. Farmers here rely on few livestock (three to five head of cattle ha−1) to supply nutrient inputs and are achieving smaller than potential Basmati yields. We surveyed 42 small farms (<3.5ha, average annual income around $1000year−1) and analyzed available manure stocks for nutrient contents in order to trace the farm-level flow of manure nutrients, identify vectors of avoidable nutrient loss, and systematically identify locally relevant and feasible improvements. The interventions identified as viable were reducing nutrient losses through simple and relatively cheap manure management modifications (i.e. using straw bedding to capture livestock urine, covering farmyard manure stockpiles with plastic sheeting, enclosed biogas slurry storage, and using biogas slurry for improved compost production), in situ green manuring, and purchasing farmyard manure. Cost–benefit analyses predicted that proposed interventions could increase farmers' net profit by up to 40% while also addressing problematic nutrient gaps. While our results pertain specifically to Uttarakhand, we found that our integrated research approach worked well to address the problem of nutrient gaps on resource-poor smallholder organic farms, and believe that the strategy could be used with equal success to address similar problems in other regions.

Suggested Citation

  • Ditzler, L. & Breland, T.A. & Francis, C. & Chakraborty, M. & Singh, D.K. & Srivastava, A. & Eyhorn, F. & Groot, J.C.J. & Six, J. & Decock, C., 2018. "Identifying viable nutrient management interventions at the farm level: The case of smallholder organic Basmati rice production in Uttarakhand, India," Agricultural Systems, Elsevier, vol. 161(C), pages 61-71.
  • Handle: RePEc:eee:agisys:v:161:y:2018:i:c:p:61-71
    DOI: 10.1016/j.agsy.2017.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17300951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2017.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jena, Pradyot R. & Grote, Ulrike, 2012. "Impact Evaluation of Traditional Basmati Rice Cultivation in Uttarakhand State of Northern India: What Implications Does It Hold for Geographical Indications?," World Development, Elsevier, vol. 40(9), pages 1895-1907.
    2. Giller, K.E. & Tittonell, P. & Rufino, M.C. & van Wijk, M.T. & Zingore, S. & Mapfumo, P. & Adjei-Nsiah, S. & Herrero, M. & Chikowo, R. & Corbeels, M. & Rowe, E.C. & Baijukya, F. & Mwijage, A. & Smith,, 2011. "Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development," Agricultural Systems, Elsevier, vol. 104(2), pages 191-203, February.
    3. Surendra, K.C. & Takara, Devin & Hashimoto, Andrew G. & Khanal, Samir Kumar, 2014. "Biogas as a sustainable energy source for developing countries: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 846-859.
    4. Alvarez, S. & Rufino, M.C. & Vayssières, J. & Salgado, P. & Tittonell, P. & Tillard, E. & Bocquier, F., 2014. "Whole-farm nitrogen cycling and intensification of crop-livestock systems in the highlands of Madagascar: An application of network analysis," Agricultural Systems, Elsevier, vol. 126(C), pages 25-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frank Eyhorn & Marrit Van den Berg & Charlotte Decock & Harro Maat & Ashish Srivastava, 2018. "Does Organic Farming Provide a Viable Alternative for Smallholder Rice Farmers in India?," Sustainability, MDPI, vol. 10(12), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    3. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    4. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. N. Lalitha & Madhusudan Bandi & Soumya Vinayan, 2021. "Bhalia wheat in Gujarat: Does geographical indication registration have a role in arresting the decline?," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 23(1), pages 93-112, June.
    6. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    7. Katarzyna Ignatowicz & Gabriel Filipczak & Barbara Dybek & Grzegorz Wałowski, 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples," Energies, MDPI, vol. 16(2), pages 1-17, January.
    8. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    9. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
    10. Ricardo Situmeang & Jana Mazancová & Hynek Roubík, 2022. "Technological, Economic, Social and Environmental Barriers to Adoption of Small-Scale Biogas Plants: Case of Indonesia," Energies, MDPI, vol. 15(14), pages 1-16, July.
    11. Zhang, Weishi & Xu, Ying & Wang, Can & Streets, David G., 2022. "Assessment of the driving factors of CO2 mitigation costs of household biogas systems in China: A LMDI decomposition with cost analysis model," Renewable Energy, Elsevier, vol. 181(C), pages 978-989.
    12. Karl S. Zimmerer & Steven J. Vanek, 2016. "Toward the Integrated Framework Analysis of Linkages among Agrobiodiversity, Livelihood Diversification, Ecological Systems, and Sustainability amid Global Change," Land, MDPI, vol. 5(2), pages 1-28, April.
    13. Lacombe, Camille & Couix, Nathalie & Hazard, Laurent, 2018. "Designing agroecological farming systems with farmers: A review," Agricultural Systems, Elsevier, vol. 165(C), pages 208-220.
    14. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    15. Cooper, Gregory S. & Rich, Karl M. & Shankar, Bhavani & Rana, Vinay & Ratna, Nazmun N. & Kadiyala, Suneetha & Alam, Mohammad J. & Nadagouda, Sharan B., 2021. "Identifying ‘win-win-win’ futures from inequitable value chain trade-offs: A system dynamics approach," Agricultural Systems, Elsevier, vol. 190(C).
    16. repec:mth:jas888:v:6:y:2018:i:3:p:158-173 is not listed on IDEAS
    17. Hammond, Jim & Rosenblum, Nathaniel & Breseman, Dana & Gorman, Léo & Manners, Rhys & van Wijk, Mark T. & Sibomana, Milindi & Remans, Roseline & Vanlauwe, Bernard & Schut, Marc, 2020. "Towards actionable farm typologies: Scaling adoption of agricultural inputs in Rwanda," Agricultural Systems, Elsevier, vol. 183(C).
    18. Bedi, Shaibu Mellon & Azzarri, Carlo & Kotu, Bekele Hundi & Kornher, Lukas, 2021. "Scaling-up Agricultural Innovations: Who Should be Targeted?," 2021 Conference, August 17-31, 2021, Virtual 315267, International Association of Agricultural Economists.
    19. Berrueta, Cecilia & Giménez, Gustavo & Dogliotti, Santiago, 2021. "Scaling up from crop to farm level: Co-innovation framework to improve vegetable farm systems sustainability," Agricultural Systems, Elsevier, vol. 189(C).
    20. Kozarac, Darko & Taritas, Ivan & Vuilleumier, David & Saxena, Samveg & Dibble, Robert W., 2016. "Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine," Energy, Elsevier, vol. 115(P1), pages 180-193.
    21. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, 2022. "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:161:y:2018:i:c:p:61-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.