IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v136y2015icp138-146.html
   My bibliography  Save this article

Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala

Author

Listed:
  • Harrison, Matthew T.
  • McSweeney, Chris
  • Tomkins, Nigel W.
  • Eckard, Richard J.

Abstract

Leucaena leucocephala (leucaena) is a perennial legume shrub of subtropical regions that has forage characteristics favourable for livestock production, often delivering ruminant liveweight gains that are superior to most other forage systems. Recent work suggests that leucaena mitigates ruminant enteric methane emissions, implying that the shrub may also reduce greenhouse gas (GHG) emissions at the whole farm level. However, the high crude protein content of leucaena relative to endemic grasses can increase livestock urine nitrogen concentration and may increase soil nitrous oxide emissions, potentially offsetting benefits of enteric methane mitigation.

Suggested Citation

  • Harrison, Matthew T. & McSweeney, Chris & Tomkins, Nigel W. & Eckard, Richard J., 2015. "Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala," Agricultural Systems, Elsevier, vol. 136(C), pages 138-146.
  • Handle: RePEc:eee:agisys:v:136:y:2015:i:c:p:138-146
    DOI: 10.1016/j.agsy.2015.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X15000360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2015.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harrison, Matthew T. & Jackson, Tom & Cullen, Brendan R. & Rawnsley, Richard P. & Ho, Christie & Cummins, Leo & Eckard, Richard J., 2014. "Increasing ewe genetic fecundity improves whole-farm production and reduces greenhouse gas emissions intensities," Agricultural Systems, Elsevier, vol. 131(C), pages 23-33.
    2. Alcock, Douglas J. & Harrison, Matthew T. & Rawnsley, Richard P. & Eckard, Richard J., 2015. "Can animal genetics and flock management be used to reduce greenhouse gas emissions but also maintain productivity of wool-producing enterprises?," Agricultural Systems, Elsevier, vol. 132(C), pages 25-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mayberry, Dianne & Bartlett, Harriet & Moss, Jonathan & Davison, Thomas & Herrero, Mario, 2019. "Pathways to carbon-neutrality for the Australian red meat sector," Agricultural Systems, Elsevier, vol. 175(C), pages 13-21.
    2. Adriana Rivera-Huerta & María Salud Rubio Lozano & Juan C. Ku-Vera & Leonor Patricia Güereca, 2022. "Emission factors from enteric fermentation of different categories of cattle in the Mexican tropics: a comparison between 2006 and 2019 IPCC," Climatic Change, Springer, vol. 172(3), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McPhee, Malcolm J. & Evered, Mark & Andrews, Todd & Pacheco, David & Dougherty, Holland C. & Ingham, Aaron B. & Harden, Steven & Crean, Jason & Roche, Leslie & Eastburn, Danny J. & Oltjen, James W. & , 2019. "Beef production simulation of nitrate and lipid supplements for pasture and rangeland fed enterprises," Agricultural Systems, Elsevier, vol. 170(C), pages 19-27.
    2. Kaini, S. & Harrison, M. T. & Gardner, T. & Nepal, Santosh & Sharma, A. K., 2022. "The impacts of climate change on the irrigation water demand, grain yield, and biomass yield of wheat crop in Nepal," Papers published in Journals (Open Access), International Water Management Institute, pages 1-14(17):27.
    3. Ara, Iffat & Turner, Lydia & Harrison, Matthew Tom & Monjardino, Marta & deVoil, Peter & Rodriguez, Daniel, 2021. "Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review," Agricultural Water Management, Elsevier, vol. 257(C).
    4. Toro-Mujica, Paula & Aguilar, Claudio & Vera, Raúl R. & Bas, Fernando, 2017. "Carbon footprint of sheep production systems in semi-arid zone of Chile: A simulation-based approach of productive scenarios and precipitation patterns," Agricultural Systems, Elsevier, vol. 157(C), pages 22-38.
    5. Sahar Shahpari & Janelle Allison & Matthew Tom Harrison & Roger Stanley, 2021. "An Integrated Economic, Environmental and Social Approach to Agricultural Land-Use Planning," Land, MDPI, vol. 10(4), pages 1-18, April.
    6. Monika Komorowska & Marcin Niemiec & Jakub Sikora & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Pavol Findura & Hatice Gurgulu & Joanna Stuglik & Maciej Chowaniak & Atılgan Atılgan, 2022. "Closed-Loop Agricultural Production and Its Environmental Efficiency: A Case Study of Sheep Wool Production in Northwestern Kyrgyzstan," Energies, MDPI, vol. 15(17), pages 1-19, August.
    7. Alcock, Douglas J. & Harrison, Matthew T. & Rawnsley, Richard P. & Eckard, Richard J., 2015. "Can animal genetics and flock management be used to reduce greenhouse gas emissions but also maintain productivity of wool-producing enterprises?," Agricultural Systems, Elsevier, vol. 132(C), pages 25-34.
    8. Farrell, L. & Herron, J. & Pabiou, T. & McHugh, N. & McDermott, K. & Shalloo, L. & O'Brien, D. & Bohan, A., 2022. "Modelling the production, profit, and greenhouse gas emissions of Irish sheep flocks divergent in genetic merit," Agricultural Systems, Elsevier, vol. 201(C).
    9. Ke Liu & Matthew Tom Harrison & Haoliang Yan & De Li Liu & Holger Meinke & Gerrit Hoogenboom & Bin Wang & Bin Peng & Kaiyu Guan & Jonas Jaegermeyr & Enli Wang & Feng Zhang & Xiaogang Yin & Sotirios Ar, 2023. "Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Keywords

    Beef cattle; Carbon credits; C4 grass; Grazing; Ranch; Steers;
    All these keywords.

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:136:y:2015:i:c:p:138-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.