IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v117y2013icp19-29.html
   My bibliography  Save this article

Cropping system effects on sorghum grain yield, soil organic carbon, and global warming potential in central and south Texas

Author

Listed:
  • Meki, Manyowa N.
  • Kemanian, Armen R.
  • Potter, Steven R.
  • Blumenthal, Jürg M.
  • Williams, Jimmy R.
  • Gerik, Thomas J.

Abstract

There is an increased demand on agricultural systems in the United States and the world to provide food, fiber, and feedstock for the emerging bioenergy industry. The agricultural intensification that this requires could have positive and negative feedbacks in productivity and the environment. In this paper we used the simulation model EPIC to evaluate the impact of alternative tillage and management systems on grain sorghum (Sorghum bicolor L. Moench) production in central and south Texas and to provide long-term insights into the sustainability of the proposed systems as avenues to increase agricultural output. Three tillage systems were tested: conventional (CT), reduced (RT), and no-tillage (NT). These tillage systems were tested on irrigated and rainfed conditions, and in soils with varying levels of structural erosion control practices (no practice, contour tillage, and contours+terraces). Grain yield differed only slightly across the three tillage systems with an average grain yield of 5.7Mgha−1. Over the course of 100-year simulations, NT and RT systems had higher soil organic carbon (SOC) storage (100 and 91Mgha−1, respectively) than CT (85Mgha−1), with most of the difference originating in the first 25years of the simulations. As a result, NT and RT systems showed lower net global warming potentials (GWPs) (0.20 and 0.50MgCha−1year−1) than CT (0.60MgCha−1year−1). Irrigated systems had 26% higher grain yields than rainfed systems; yet the high energy needed to pump irrigation water (0.10MgCha−1year−1) resulted in a higher net GWP for irrigated systems (0.50 vs. 0.40MgCha−1year−1). Contours and contours+terraces had minimal impact on grain yields, SOC storage and GWP. No-till was the single technology with the largest positive impact on GWP and preservation or enhancement of SOC. Overall, the impact of individual tillage cropping systems on GWP seems to be decoupled from the productivity of a given location as determined by weather or soil type. When expressed per unit of output, high yield locations have a much lower GWP than low yield locations and would be therefore prime targets for production intensification.

Suggested Citation

  • Meki, Manyowa N. & Kemanian, Armen R. & Potter, Steven R. & Blumenthal, Jürg M. & Williams, Jimmy R. & Gerik, Thomas J., 2013. "Cropping system effects on sorghum grain yield, soil organic carbon, and global warming potential in central and south Texas," Agricultural Systems, Elsevier, vol. 117(C), pages 19-29.
  • Handle: RePEc:eee:agisys:v:117:y:2013:i:c:p:19-29
    DOI: 10.1016/j.agsy.2013.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X13000061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2013.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Robertson & Peter Grace, 2004. "Greenhouse Gas Fluxes in Tropical and Temperate Agriculture: The need for a Full-Cost accounting of Global Warming Potentials," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 6(1), pages 51-63, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Tang & Shihang Wang & Mingsong Zhao & Falyu Qin & Xiaoyu Liu, 2020. "Simulated Soil Organic Carbon Density Changes from 1980 to 2016 in Shandong Province Dry Farmlands Using the CENTURY Model," Sustainability, MDPI, vol. 12(13), pages 1-17, July.
    2. Theuretzbacher, Franz & Bauer, Alexander & Lizasoain, Javier & Becker, Manuel & Rosenau, Thomas & Potthast, Antje & Friedl, Anton & Piringer, Gerhard & Gronauer, Andreas, 2013. "Potential of different Sorghum bicolor (L. moench) varieties for combined ethanol and biogas production in the Pannonian climate of Austria," Energy, Elsevier, vol. 55(C), pages 107-113.
    3. Ramcharan, Amanda M. & Richard, Tom L., 2017. "Carbon and nitrogen environmental trade-offs of winter rye cellulosic biomass in the Chesapeake Watershed," Agricultural Systems, Elsevier, vol. 156(C), pages 85-94.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Hergoualc’h & L. Verchot, 2014. "Greenhouse gas emission factors for land use and land-use change in Southeast Asian peatlands," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 789-807, August.
    2. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    3. Hoffman, Eric & Cavigelli, Michel A. & Camargo, Gustavo & Ryan, Matthew & Ackroyd, Victoria J. & Richard, Tom L. & Mirsky, Steven, 2018. "Energy use and greenhouse gas emissions in organic and conventional grain crop production: Accounting for nutrient inflows," Agricultural Systems, Elsevier, vol. 162(C), pages 89-96.
    4. Grace, Peter R. & Philip Robertson, G. & Millar, Neville & Colunga-Garcia, Manuel & Basso, Bruno & Gage, Stuart H. & Hoben, John, 2011. "The contribution of maize cropping in the Midwest USA to global warming: A regional estimate," Agricultural Systems, Elsevier, vol. 104(3), pages 292-296, March.
    5. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    6. Zhiqiang Hu & Caiyun Gu & Carmelo Maucieri & Fei Shi & Yufei Zhao & Chenlong Feng & Yan Cao & Yaojun Zhang, 2022. "Crayfish–Fish Aquaculture Ponds Exert Reduced Climatic Impacts and Higher Economic Benefits than Traditional Wheat–Rice Paddy Cultivation," Agriculture, MDPI, vol. 12(4), pages 1-16, April.
    7. Athanasios Balafoutis & Bert Beck & Spyros Fountas & Jurgen Vangeyte & Tamme Van der Wal & Iria Soto & Manuel Gómez-Barbero & Andrew Barnes & Vera Eory, 2017. "Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    8. Noppol Arunrat & Nathsuda Pumijumnong, 2017. "Practices for Reducing Greenhouse Gas Emissions from Rice Production in Northeast Thailand," Agriculture, MDPI, vol. 7(1), pages 1-20, January.
    9. Kenny, Daniel C., 2017. "Modeling of natural and social capital on farms: Toward useable integration," Ecological Modelling, Elsevier, vol. 356(C), pages 1-13.
    10. Ebiyon Idundun & Andrew S. Hursthouse & Iain McLellan, 2021. "Carbon Management in UK Higher Education Institutions: An Overview," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    11. Ikabongo Mukumbuta & Mariko Shimizu & Ryusuke Hatano, 2017. "Mitigating Global Warming Potential and Greenhouse Gas Intensities by Applying Composted Manure in Cornfield: A 3-Year Field Study in an Andosol Soil," Agriculture, MDPI, vol. 7(2), pages 1-20, February.
    12. Giuseppe Di Vita & Manuela Pilato & Biagio Pecorino & Filippo Brun & Mario D’Amico, 2017. "A Review of the Role of Vegetal Ecosystems in CO 2 Capture," Sustainability, MDPI, vol. 9(10), pages 1-10, October.
    13. Md. Abdus Salam & Toshikuni Noguchi, 2005. "Impact of Human Activities on Carbon Dioxide (CO2) Emissions: A Statistical Analysis," Environment Systems and Decisions, Springer, vol. 25(1), pages 19-30, March.
    14. Yongli Wang & Shanshan Song & Mingchen Gao & Jingyan Wang & Jinrong Zhu & Zhongfu Tan, 2020. "Accounting for the Life Cycle Cost of Power Grid Projects by Employing a System Dynamics Technique: A Power Reform Perspective," Sustainability, MDPI, vol. 12(8), pages 1-28, April.
    15. Cardoso, Abmael S. & Berndt, Alexandre & Leytem, April & Alves, Bruno J.R. & de Carvalho, Isabel das N.O. & de Barros Soares, Luis Henrique & Urquiaga, Segundo & Boddey, Robert M., 2016. "Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use," Agricultural Systems, Elsevier, vol. 143(C), pages 86-96.
    16. David, Cody & Lemke, Reynald & Helgason, Warren & Farrell, Richard E., 2018. "Current inventory approach overestimates the effect of irrigated crop management on soil-derived greenhouse gas emissions in the semi-arid Canadian Prairies," Agricultural Water Management, Elsevier, vol. 208(C), pages 19-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:117:y:2013:i:c:p:19-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.