IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v113y2012icp57-63.html
   My bibliography  Save this article

Building crop models within different crop modelling frameworks

Author

Listed:
  • Adam, M.
  • Corbeels, M.
  • Leffelaar, P.A.
  • Van Keulen, H.
  • Wery, J.
  • Ewert, F.

Abstract

Modular frameworks for crop modelling have evolved through simultaneous progress in crop science and software development but differences among these frameworks exist which are not well understood, resulting in potential misuse for crop modelling. In this paper we review differences and similarities among different developed frameworks and identify some implications for crop modelling. We consider three modelling frameworks currently used for crop modelling: CROSPAL (CROp Simulator: Picking and Assembling Libraries), APES (Agricultural Production and Externalities Simulator) and APSIM (Agricultural Production Systems sIMulator). The frameworks are implemented differently and they provide more or less flexibility and guidance, to facilitate assembly of crop model from model components. We underline the importance of systematic approaches to facilitate the selection of appropriate model structure and derive suggestions to facilitate it. We particularly stress the need for better documentation of the underlying assumptions of the modules on simulated processes and on the criteria applied in the selection of these modules for a particular simulation objective. Such documentation should help to point out the sources of uncertainties associated with the development of crop models and to reinforce the role of the crop modeller as an intermediary between the software engineer, coding the modules, and the end users, agronomists or crop physiologists using the model for a specific objective. Finally, the key contributions of modelling frameworks in the crop modelling domain are discussed and we draw conclusions for the prospects of such frameworks in the crop modelling field which should continue to reside on the principles of systems analysis but combined with up-to-date advances in software engineering techniques.

Suggested Citation

  • Adam, M. & Corbeels, M. & Leffelaar, P.A. & Van Keulen, H. & Wery, J. & Ewert, F., 2012. "Building crop models within different crop modelling frameworks," Agricultural Systems, Elsevier, vol. 113(C), pages 57-63.
  • Handle: RePEc:eee:agisys:v:113:y:2012:i:c:p:57-63
    DOI: 10.1016/j.agsy.2012.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X12001229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2012.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    2. van Ittersum, Martin K. & Ewert, Frank & Heckelei, Thomas & Wery, Jacques & Alkan Olsson, Johanna & Andersen, Erling & Bezlepkina, Irina & Brouwer, Floor & Donatelli, Marcello & Flichman, Guillermo & , 2008. "Integrated assessment of agricultural systems - A component-based framework for the European Union (SEAMLESS)," Agricultural Systems, Elsevier, vol. 96(1-3), pages 150-165, March.
    3. Moore, A.D. & Holzworth, D.P. & Herrmann, N.I. & Huth, N.I. & Robertson, M.J., 2007. "The Common Modelling Protocol: A hierarchical framework for simulation of agricultural and environmental systems," Agricultural Systems, Elsevier, vol. 95(1-3), pages 37-48, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillaume Martin & Sandrine Allain & Jacques-Eric Bergez & Delphine Burger-Leenhardt & Julie Constantin & Michel Duru & Laurent Hazard & Camille Lacombe & Danièle Magda & Marie-Angélina Magne & Julie , 2018. "How to Address the Sustainability Transition of Farming Systems? A Conceptual Framework to Organize Research," Sustainability, MDPI, vol. 10(6), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schreefel, L. & de Boer, I.J.M. & Timler, C.J. & Groot, J.C.J. & Zwetsloot, M.J. & Creamer, R.E. & Schrijver, A. Pas & van Zanten, H.H.E. & Schulte, R.P.O., 2022. "How to make regenerative practices work on the farm: A modelling framework," Agricultural Systems, Elsevier, vol. 198(C).
    2. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    3. Britz, Wolfgang & Ciaian, Pavel & Gocht, Alexander & Kanellopoulos, Argyris & Kremmydas, Dimitrios & Müller, Marc & Petsakos, Athanasios & Reidsma, Pytrik, 2021. "A design for a generic and modular bio-economic farm model," Agricultural Systems, Elsevier, vol. 191(C).
    4. Louhichi, Kamel & Flichman, Guillermo & Blanco Fonseca, Maria, 2009. "A generic template for FSSIM," Reports 57463, Wageningen University, SEAMLESS: System for Environmental and Agricultural Modelling; Linking European Science and Society.
    5. Chopin, Pierre & Blazy, Jean-Marc & Guindé, Loïc & Wery, Jacques & Doré, Thierry, 2017. "A framework for designing multi-functional agricultural landscapes: Application to Guadeloupe Island," Agricultural Systems, Elsevier, vol. 157(C), pages 316-329.
    6. Kragt, M.E. & Pannell, D.J. & McVittie, A. & Stott, A.W. & Vosough Ahmadi, B. & Wilson, P., 2016. "Improving interdisciplinary collaboration in bio-economic modelling for agricultural systems," Agricultural Systems, Elsevier, vol. 143(C), pages 217-224.
    7. Beck, Howard & Morgan, Kelly & Jung, Yunchul & Grunwald, Sabine & Kwon, Ho-young & Wu, Jin, 2010. "Ontology-based simulation in agricultural systems modeling," Agricultural Systems, Elsevier, vol. 103(7), pages 463-477, September.
    8. Britz, Wolfgang & van Ittersum, Martin K. & Oude Lansink, Alfons G.J.M. & Heckelei, Thomas, 2012. "Tools for Integrated Assessment in Agriculture. State of the Art and Challenges," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(2), pages 1-26, August.
    9. Jahel, Camille & Baron, Christian & Vall, Eric & Karambiri, Medina & Castets, Mathieu & Coulibaly, Kalifa & Bégué, Agnès & Lo Seen, Danny, 2017. "Spatial modelling of agro-ecosystem dynamics across scales: A case in the cotton region of West-Burkina Faso," Agricultural Systems, Elsevier, vol. 157(C), pages 303-315.
    10. Dupré, Marie & Blazy, Jean-Marc & Michels, Thierry & Le Gal, Pierre-Yves, 2021. "Supporting policymakers in designing agricultural policy instruments: A participatory approach with a regional bioeconomic model in La Réunion (France)," Land Use Policy, Elsevier, vol. 100(C).
    11. Uthes, Sandra & Fricke, Katharina & König, Hannes & Zander, Peter & van Ittersum, Martin & Sieber, Stefan & Helming, Katharina & Piorr, Annette & Müller, Klaus, 2010. "Policy relevance of three integrated assessment tools—A comparison with specific reference to agricultural policies," Ecological Modelling, Elsevier, vol. 221(18), pages 2136-2152.
    12. Schönhart, Martin & Schauppenlehner, Thomas & Schmid, Erwin & Muhar, Andreas, 2011. "Integration of bio-physical and economic models to analyze management intensity and landscape structure effects at farm and landscape level," Agricultural Systems, Elsevier, vol. 104(2), pages 122-134, February.
    13. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    14. Stefano Gaudino & Pytrik Reidsma & Argyris Kanellopoulos & Dario Sacco & Martin K. Van Ittersum, 2018. "Integrated Assessment of the EU’s Greening Reform and Feed Self-Sufficiency Scenarios on Dairy Farms in Piemonte, Italy," Agriculture, MDPI, vol. 8(9), pages 1-27, September.
    15. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    16. Sadeeka L. Jayasinghe & Dean T. Thomas & Jonathan P. Anderson & Chao Chen & Ben C. T. Macdonald, 2023. "Global Application of Regenerative Agriculture: A Review of Definitions and Assessment Approaches," Sustainability, MDPI, vol. 15(22), pages 1-49, November.
    17. Blazy, Jean-Marc & Tixier, Philippe & Thomas, Alban & Ozier-Lafontaine, Harry & Salmon, Frédéric & Wery, Jacques, 2010. "BANAD: A farm model for ex ante assessment of agro-ecological innovations and its application to banana farms in Guadeloupe," Agricultural Systems, Elsevier, vol. 103(4), pages 221-232, May.
    18. Mouratiadou, Ioanna & Topp, Cairistiona & Moran, Dominic, 2008. "Modelling Agricultural Diffuse Pollution: CAP – WFD Interactions and Cost Effectiveness of Measures," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6461, European Association of Agricultural Economists.
    19. Ditzler, Lenora & Klerkx, Laurens & Chan-Dentoni, Jacqueline & Posthumus, Helena & Krupnik, Timothy J. & Ridaura, Santiago López & Andersson, Jens A. & Baudron, Frédéric & Groot, Jeroen C.J., 2018. "Affordances of agricultural systems analysis tools: A review and framework to enhance tool design and implementation," Agricultural Systems, Elsevier, vol. 164(C), pages 20-30.
    20. Leite, João Guilherme Dal Belo & Silva, João Vasco & van Ittersum, Martin K., 2014. "Integrated assessment of biodiesel policies aimed at family farms in Brazil," Agricultural Systems, Elsevier, vol. 131(C), pages 64-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:113:y:2012:i:c:p:57-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.