IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v7y2004i2p618-627.html
   My bibliography  Save this article

Identification of causal factor models of stationary time series

Author

Listed:
  • Chris Heaton
  • Victor Solo

Abstract

We consider identification of a class of dynamic factor model. We show that identification holds under reasonably general conditions. The results apply to many of the dynamic factor models that have appeared in the literature and to many worthwhile generalizations of those models. Copyright Royal Economic Socciety 2004

Suggested Citation

  • Chris Heaton & Victor Solo, 2004. "Identification of causal factor models of stationary time series," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 618-627, December.
  • Handle: RePEc:ect:emjrnl:v:7:y:2004:i:2:p:618-627
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heaton, Chris & Oslington, Paul, 2010. "Micro vs macro explanations of post-war US unemployment movements," Economics Letters, Elsevier, vol. 106(2), pages 87-91, February.
    2. Gabriele Fiorentini & Alessandro Galesi & Enrique Sentana, 2016. "Fast ML Estimation of Dynamic Bifactor Models: An Application to European Inflation," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 215-282, Emerald Group Publishing Limited.
    3. Beutner, Eric & Reese, Simon & Urbain, Jean-Pierre, 2017. "Identifiability issues of age–period and age–period–cohort models of the Lee–Carter type," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 117-125.
    4. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
    5. McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.
    6. Fiorentini, Gabriele & Galesi, Alessandro & Sentana, Enrique, 2018. "A spectral EM algorithm for dynamic factor models," Journal of Econometrics, Elsevier, vol. 205(1), pages 249-279.
    7. Gabriele Fiorentini & Enrique Sentana, 2019. "Dynamic specification tests for dynamic factor models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 325-346, April.
    8. Dickhaus, Thorsten & Sirotko-Sibirskaya, Natalia, 2019. "Simultaneous statistical inference in dynamic factor models: Chi-square approximation and model-based bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 30-46.
    9. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:7:y:2004:i:2:p:618-627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.