IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v12y2009is1ps1-s18.html
   My bibliography  Save this article

Goodness-of-fit tests for functional data

Author

Listed:
  • Federico A. Bugni
  • Peter Hall
  • Joel L. Horowitz
  • George R. Neumann

Abstract

Economic data are frequently generated by stochastic processes that can be modelled as occurring in continuous time. That is, the data are treated as realizations of a random function (functional data). Sometimes an economic theory model specifies the process up to a finite-dimensional parameter. This paper develops a test of the null hypothesis that a given functional data set was generated by a specified parametric model of a continuous-time process. The alternative hypothesis is non-parametric. A random function is a form of infinite-dimensional random variable, and the test presented here a generalization of the familiar Cramér-von Mises test to an infinite dimensional random variable. The test is illustrated by using it to test the hypothesis that a sample of wage paths was generated by a certain equilibrium job search model. Simulation studies show that the test has good finite-sample performance. Copyright (C) The Author(s). Journal compilation (C) Royal Economic Society 2009

Suggested Citation

  • Federico A. Bugni & Peter Hall & Joel L. Horowitz & George R. Neumann, 2009. "Goodness-of-fit tests for functional data," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 1-18, January.
  • Handle: RePEc:ect:emjrnl:v:12:y:2009:i:s1:p:s1-s18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico A. Bugni & Joel L. Horowitz, 2021. "Permutation tests for equality of distributions of functional data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 861-877, November.
    2. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    3. Oleksandr Gromenko & Piotr Kokoszka & Matthew Reimherr, 2017. "Detection of change in the spatiotemporal mean function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 29-50, January.
    4. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2019. "Parametric Inference on the Mean of Functional Data Applied to Lifetime Income Curves," Working papers 2019rwp-153, Yonsei University, Yonsei Economics Research Institute.
    5. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2024. "Testing equality of several distributions in separable metric spaces: A maximum mean discrepancy based approach," Journal of Econometrics, Elsevier, vol. 239(2).
    6. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    7. Petr Čoupek & Viktor Dolník & Zdeněk Hlávka & Daniel Hlubinka, 2024. "Fourier approach to goodness-of-fit tests for Gaussian random processes," Statistical Papers, Springer, vol. 65(5), pages 2937-2972, July.
    8. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2022. "Parametric Conditional Mean Inference With Functional Data Applied To Lifetime Income Curves," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 391-456, February.
    9. Graciela Estévez-Pérez & Philippe Vieu, 2021. "A new way for ranking functional data with applications in diagnostic test," Computational Statistics, Springer, vol. 36(1), pages 127-154, March.
    10. Marc Ditzhaus & Daniel Gaigall, 2022. "Testing marginal homogeneity in Hilbert spaces with applications to stock market returns," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 749-770, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:12:y:2009:i:s1:p:s1-s18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.