IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v11y2008i2p244-270.html
   My bibliography  Save this article

Moment based regression algorithms for drift and volatility estimation in continuous-time Markov switching models

Author

Listed:
  • Robert J. Elliott
  • Vikram Krishnamurthy
  • Jörn Sass

Abstract

We consider a continuous time Markov switching model (MSM) which is widely used in mathematical finance. The aim is to estimate the parameters given observations in discrete time. Since there is no finite dimensional filter for estimating the underlying state of the MSM, it is not possible to compute numerically the maximum likelihood parameter estimate via the well known expectation maximization (EM) algorithm. Therefore in this paper, we propose a method of moments based parameter estimator. The moments of the observed process are computed explicitly as a function of the time discretization interval of the discrete time observation process. We then propose two algorithms for parameter estimation of the MSM. The first algorithm is based on a least-squares fit to the exact moments over different time lags, while the second algorithm is based on estimating the coefficients of the expansion (with respect to time) of the moments. Extensive numerical results comparing the algorithm with the EM algorithm for the discretized model are presented. Copyright © 2008 The Authors. Journal compilation © Royal Economic Society 2008

Suggested Citation

  • Robert J. Elliott & Vikram Krishnamurthy & Jörn Sass, 2008. "Moment based regression algorithms for drift and volatility estimation in continuous-time Markov switching models," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 244-270, July.
  • Handle: RePEc:ect:emjrnl:v:11:y:2008:i:2:p:244-270
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bäuerle Nicole & Gilitschenski Igor & Hanebeck Uwe, 2015. "Exact and approximate hidden Markov chain filters based on discrete observations," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 159-176, December.
    2. Lux, Thomas, 2013. "Exact solutions for the transient densities of continuous-time Markov switching models: With an application to the poisson multifractal model," Kiel Working Papers 1871, Kiel Institute for the World Economy (IfW Kiel).
    3. Vikram Krishnamurthy & Elisabeth Leoff & Jorn Sass, 2016. "Filterbased Stochastic Volatility in Continuous-Time Hidden Markov Models," Papers 1602.05323, arXiv.org.
    4. Markus Hahn & Sylvia Frühwirth-Schnatter & Jörn Sass, 2009. "Estimating models based on Markov jump processes given fragmented observation series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(4), pages 403-425, December.
    5. Krishnamurthy, Vikram & Leoff, Elisabeth & Sass, Jörn, 2018. "Filterbased stochastic volatility in continuous-time hidden Markov models," Econometrics and Statistics, Elsevier, vol. 6(C), pages 1-21.
    6. Ma, Jingtang & Li, Wenyuan & Zheng, Harry, 2017. "Dual control Monte-Carlo method for tight bounds of value function in regime switching utility maximization," European Journal of Operational Research, Elsevier, vol. 262(3), pages 851-862.
    7. Nicole Bauerle & Igor Gilitschenski & Uwe D. Hanebeck, 2014. "Exact and Approximate Hidden Markov Chain Filters Based on Discrete Observations," Papers 1411.0849, arXiv.org, revised Dec 2014.
    8. Elisabeth Leoff & Leonie Ruderer & Jörn Sass, 2022. "Signal-to-noise matrix and model reduction in continuous-time hidden Markov models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 327-359, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:11:y:2008:i:2:p:244-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.