IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2022-01-63.html
   My bibliography  Save this article

Diversified Sustainable Resource Availability by Optimizing Economic Environmental and Supply Risk factors in Malaysia s Power Generation Mix

Author

Listed:
  • Muhammad Mutasim Billah Tufail

    (Department of Management Studies, Bahria University, Karachi Campus, Pakistan,)

  • Maawra Salam

    (Department of Business Studies, Bahria University, Karachi Campus, Pakistan,)

  • Muhammad Shakeel

    (Department of Business Studies, Bahria University, Karachi Campus, Pakistan,)

  • Ali Gohar

    (Department of Business Studies, Bahria University, Karachi Campus, Pakistan,)

Abstract

Population growth and economic development contribute to the rise in the demand for electricity. To meet the demand, electricity generation has been relying on fossil fuels. This practice has three major drawbacks: inevitable resource depletion, environmental concerns, and supply risk. Renewable fuels are touted to be the future of sustainable power generation. However, there is a need to assess and optimize the use of the available resource in an effective and efficient manner. In order to accomplish the desired objectives, this study adopted the multi-perspective approach for efficient utilization of resources, both in terms of cost and diversification, and also aimed to propose the optimum combination of technologies for electricity generation in Malaysia. In this regard, first, the potential of the resources was identified from the Malaysian prospective compliance with the five fuel energy action plan 2020. All the five fuels were examined in terms of economic, environmental and security parameters, and evaluated in the terms of cost to measure the total exposure in monetary units. For the economic analysis, the LCOE cost quantification method was used. Similarly, for the restriction of carbon emission, a carbon-tax policy was proposed and a novel technique was designed for the quantification of excessive cost of security in the electricity generation industry. This study applied the simulation mathematical modelling and the graphical evaluation approach to optimize the power generation mix in terms of cost and diversity index. Hence, this study will assist the policy-makers in making efficient long-term policies considering the impact of various factors on total generation cost while adopting the concept of diversification for an efficient and uninterrupted power generation process.

Suggested Citation

  • Muhammad Mutasim Billah Tufail & Maawra Salam & Muhammad Shakeel & Ali Gohar, 2022. "Diversified Sustainable Resource Availability by Optimizing Economic Environmental and Supply Risk factors in Malaysia s Power Generation Mix," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 507-516.
  • Handle: RePEc:eco:journ2:2022-01-63
    as

    Download full text from publisher

    File URL: http://www.econjournals.com/index.php/ijeep/article/download/12605/6646/29785
    Download Restriction: no

    File URL: http://www.econjournals.com/index.php/ijeep/article/view/12605/6646
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cohen, Gail & Joutz, Frederick & Loungani, Prakash, 2011. "Measuring energy security: Trends in the diversification of oil and natural gas supplies," Energy Policy, Elsevier, vol. 39(9), pages 4860-4869, September.
    2. Chua, Shing Chyi & Oh, Tick Hui, 2010. "Review on Malaysia's national energy developments: Key policies, agencies, programmes and international involvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2916-2925, December.
    3. Tang, Chor Foon, 2008. "A re-examination of the relationship between electricity consumption and economic growth in Malaysia," Energy Policy, Elsevier, vol. 36(8), pages 3067-3075, August.
    4. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    5. Sibeperegasam, Mahesvaran & Ramachandaramurthy, Vigna Kumaran & Walker, Sara & Kanesan, Jeevan, 2021. "Malaysia’s electricity market structure in transition," Utilities Policy, Elsevier, vol. 72(C).
    6. Jansen, Jaap C. & Seebregts, Ad J., 2010. "Long-term energy services security: What is it and how can it be measured and valued?," Energy Policy, Elsevier, vol. 38(4), pages 1654-1664, April.
    7. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    8. Lean, Hooi Hooi & Smyth, Russell, 2010. "Multivariate Granger causality between electricity generation, exports, prices and GDP in Malaysia," Energy, Elsevier, vol. 35(9), pages 3640-3648.
    9. Brown, Stephen P.A. & Huntington, Hillard G., 2008. "Energy security and climate change protection: Complementarity or tradeoff?," Energy Policy, Elsevier, vol. 36(9), pages 3510-3513, September.
    10. Chandran, V.G.R. & Sharma, Susan & Madhavan, Karunagaran, 2010. "Electricity consumption-growth nexus: The case of Malaysia," Energy Policy, Elsevier, vol. 38(1), pages 606-612, January.
    11. Tang, Chor Foon & Tan, Eu Chye, 2013. "Exploring the nexus of electricity consumption, economic growth, energy prices and technology innovation in Malaysia," Applied Energy, Elsevier, vol. 104(C), pages 297-305.
    12. Oh, Tick Hui, 2010. "Carbon capture and storage potential in coal-fired plant in Malaysia--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2697-2709, December.
    13. von Hippel, David & Savage, Timothy & Hayes, Peter, 2011. "Overview of the Northeast Asia energy situation," Energy Policy, Elsevier, vol. 39(11), pages 6703-6711.
    14. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Turton, Hal & Barreto, Leonardo, 2006. "Long-term security of energy supply and climate change," Energy Policy, Elsevier, vol. 34(15), pages 2232-2250, October.
    16. Yoo, S.-H., 2006. "The causal relationship between electricity consumption and economic growth in the ASEAN countries," Energy Policy, Elsevier, vol. 34(18), pages 3573-3582, December.
    17. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    18. Li, Yiming & Solaymani, Saeed, 2021. "Energy consumption, technology innovation and economic growth nexuses in Malaysian," Energy, Elsevier, vol. 232(C).
    19. Vivoda, Vlado, 2009. "Diversification of oil import sources and energy security: A key strategy or an elusive objective?," Energy Policy, Elsevier, vol. 37(11), pages 4615-4623, November.
    20. Hedenus, Fredrik & Azar, Christian & Johansson, Daniel J.A., 2010. "Energy security policies in EU-25--The expected cost of oil supply disruptions," Energy Policy, Elsevier, vol. 38(3), pages 1241-1250, March.
    21. Sutrisno, Aziiz & Nomaler, Ӧnder & Alkemade, Floor, 2021. "Has the global expansion of energy markets truly improved energy security?," Energy Policy, Elsevier, vol. 148(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lean, Hooi Hooi & Smyth, Russell, 2014. "Disaggregated energy demand by fuel type and economic growth in Malaysia," Applied Energy, Elsevier, vol. 132(C), pages 168-177.
    2. Månsson, André & Johansson, Bengt & Nilsson, Lars J., 2014. "Assessing energy security: An overview of commonly used methodologies," Energy, Elsevier, vol. 73(C), pages 1-14.
    3. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M., 2014. "Electricity consumption from renewable and non-renewable sources and economic growth: Evidence from Latin American countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 290-298.
    4. Al-Mulali, Usama & Ozturk, Ilhan, 2014. "Are energy conservation policies effective without harming economic growth in the Gulf Cooperation Council countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 639-650.
    5. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    6. Solarin, Sakiru Adebola & Shahbaz, Muhammad, 2013. "Trivariate causality between economic growth, urbanisation and electricity consumption in Angola: Cointegration and causality analysis," Energy Policy, Elsevier, vol. 60(C), pages 876-884.
    7. Kyophilavong, Phouphet & Shahbaz, Muhammad & Kim, Byoungki & OH, Jeong-Soo, 2017. "A note on the electricity-growth nexus in Lao PDR," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1251-1260.
    8. Månsson, André & Sanches-Pereira, Alessandro & Hermann, Sebastian, 2014. "Biofuels for road transport: Analysing evolving supply chains in Sweden from an energy security perspective," Applied Energy, Elsevier, vol. 123(C), pages 349-357.
    9. Shahbaz, Muhammad & Mutascu, Mihai & Tiwari, Aviral Kumar, 2012. "Revisiting the Relationship between Electricity Consumption, Capital and Economic Growth: Cointegration and Causality Analysis in Romania," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 97-120, September.
    10. Zhang, Chi & Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2017. "On electricity consumption and economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 353-368.
    11. Chor Foon Tang and Eu Chye Tan, 2012. "Electricity Consumption and Economic Growth in Portugal: Evidence from a Multivariate Framework Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    12. Saleheen, Khan & Farooq Ahmed, Jam & Muhammad, Shahbaz, 2012. "Electricity Consumption and Economic Growth in Kazakhstan: Fresh Evidence from a Multivariate Framework Analysis," MPRA Paper 43460, University Library of Munich, Germany, revised 20 Dec 2012.
    13. Sutrisno, Aziiz & Nomaler, Ӧnder & Alkemade, Floor, 2021. "Has the global expansion of energy markets truly improved energy security?," Energy Policy, Elsevier, vol. 148(PA).
    14. Shahbaz, Muhammad & Lean, Hooi Hooi, 2012. "The dynamics of electricity consumption and economic growth: A revisit study of their causality in Pakistan," Energy, Elsevier, vol. 39(1), pages 146-153.
    15. Janesh Sami, 2011. "Multivariate Cointegration and Causality between Exports, Electricity Consumption and Real Income per Capita: Recent Evidence from Japan," International Journal of Energy Economics and Policy, Econjournals, vol. 1(3), pages 59-68, November.
    16. Tang, Chor Foon & Tan, Bee Wah & Ozturk, Ilhan, 2016. "Energy consumption and economic growth in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1506-1514.
    17. Habib Hussain Khan & Nahla Samargandi & Adeel Ahmed, 2021. "Economic development, energy consumption, and climate change: An empirical account from Malaysia," Natural Resources Forum, Blackwell Publishing, vol. 45(4), pages 397-423, November.
    18. Le, Thai-Ha & Chang, Youngho & Taghizadeh-Hesary, Farhad & Yoshino, Naoyuki, 2019. "Energy insecurity in Asia: A multi-dimensional analysis," Economic Modelling, Elsevier, vol. 83(C), pages 84-95.
    19. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    20. Guo, Kun & Luan, Liyuan & Cai, Xiaoli & Zhang, Dayong & Ji, Qiang, 2024. "Energy trade stability of China: Policy options with increasing climate risks," Energy Policy, Elsevier, vol. 184(C).

    More about this item

    Keywords

    Levelized Cost of Energy; Power Generation Mix Optimization; Energy Security; Carbon Tax;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2022-01-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.