IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2020-06-62.html
   My bibliography  Save this article

Hybrid Power System for a Fuel Station Considering Temperature Coefficient

Author

Listed:
  • Oluwaseye Samson Adedoja

    (Centre for Atmospheric Research, National Space Research and Development Agency, Kogi State University, Anyigba, Nigeria,)

  • Damilola Elizabeth Babatunde

    (Covenant University, Ota, Ogun, Nigeria)

  • Olubayo Moses Babatunde

    (Department of Electrical Electronic Engineering, University of Lagos, Lagos, Nigeria.)

Abstract

It is crystal clear that appropriate technical sizing has a significant effect on the techno-economic analysis of an off-grid standalone energy system. As a result, this study presents the effect of incorporating the temperature coefficient in the optimal analysis of an off-grid hybrid system using a standard fuel (gas) station in Nigeria as a case study. Comparative analysis with and without the temperature coefficient was performed. The results showed that the inclusion of temperature coefficient leads to extra operation hours of the generator which will result in an increase in fuel consumption and annual operation cost of the diesel generator. Also, the initial cost of the PV/BAT/diesel is relatively higher than the diesel generator but, the generating emission of the hybrid system is lower when compared to the diesel-only which enhances the atmospheric condition of the society.

Suggested Citation

  • Oluwaseye Samson Adedoja & Damilola Elizabeth Babatunde & Olubayo Moses Babatunde, 2020. "Hybrid Power System for a Fuel Station Considering Temperature Coefficient," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 476-482.
  • Handle: RePEc:eco:journ2:2020-06-62
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/9886/5482
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/9886/5482
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. O. Babatunde & T. O. Akinbulire & P. O. Oluseyi & M. U. Emezirinwune, 2019. "Techno-economic viability of off-grid standalone PV-powered LED street lighting system in Lagos, Nigeria," African Journal of Science, Technology, Innovation and Development, Taylor & Francis Journals, vol. 11(7), pages 807-819, November.
    2. Amutha, W. Margaret & Rajini, V., 2016. "Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 236-246.
    3. Olubayo M. Babatunde & Josiah L. Munda & Yskandar Hamam, 2019. "Selection of a Hybrid Renewable Energy Systems for a Low-Income Household," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    2. Taofeek Afolabi & Hooman Farzaneh, 2023. "Optimal Design and Operation of an Off-Grid Hybrid Renewable Energy System in Nigeria’s Rural Residential Area, Using Fuzzy Logic and Optimization Techniques," Sustainability, MDPI, vol. 15(4), pages 1-33, February.
    3. Elias Hartvigsson & Erik Oscar Ahlgren & Sverker Molander, 2020. "Tackling complexity and problem formulation in rural electrification through conceptual modelling in system dynamics," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(1), pages 141-153, January.
    4. Muhammad Bilal Ali & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2023. "Decarbonizing Telecommunication Sector: Techno-Economic Assessment and Optimization of PV Integration in Base Transceiver Stations in Telecom Sector Spreading across Various Geographically Regions," Energies, MDPI, vol. 16(9), pages 1-34, April.
    5. Ruben Hidalgo-Leon & Fernando Amoroso & Javier Urquizo & Viviana Villavicencio & Miguel Torres & Pritpal Singh & Guillermo Soriano, 2022. "Feasibility Study for Off-Grid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador," Energies, MDPI, vol. 15(5), pages 1-25, February.
    6. Hernández-Escobedo, Q. & Fernández-García, A. & Manzano-Agugliaro, F., 2017. "Solar resource assessment for rural electrification and industrial development in the Yucatan Peninsula (Mexico)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1550-1561.
    7. Ajlan, Abdullah & Tan, Chee Wei & Abdilahi, Abdirahman Mohamed, 2017. "Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 559-570.
    8. Xiaowen Ding & Lin Liu & Guohe Huang & Ye Xu & Junhong Guo, 2019. "A Multi-Objective Optimization Model for a Non-Traditional Energy System in Beijing under Climate Change Conditions," Energies, MDPI, vol. 12(9), pages 1-21, May.
    9. Vishnupriyan, J. & Manoharan, P.S., 2018. "Multi-criteria decision analysis for renewable energy integration: A southern India focus," Renewable Energy, Elsevier, vol. 121(C), pages 474-488.
    10. Vishnupriyan, J. & Manoharan, P.S., 2017. "Demand side management approach to rural electrification of different climate zones in Indian state of Tamil Nadu," Energy, Elsevier, vol. 138(C), pages 799-815.
    11. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    12. Sadeghian, Omid & Mohammadi-Ivatloo, Behnam & Oshnoei, Arman & Aghaei, Jamshid, 2024. "Unveiling the potential of renewable energy and battery utilization in real-world public lighting systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    14. Donald Ukpanyang & Julio Terrados-Cepeda & Manuel Jesus Hermoso-Orzaez, 2022. "Multi-Criteria Selection of Waste-to-Energy Technologies for Slum/Informal Settlements Using the PROMETHEE Technique: A Case Study of the Greater Karu Urban Area in Nigeria," Energies, MDPI, vol. 15(10), pages 1-26, May.
    15. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    16. Li, Chong & Zhou, Dequn & Wang, Hui & Cheng, Huanbo & Li, Dongdong, 2019. "Feasibility assessment of a hybrid PV/diesel/battery power system for a housing estate in the severe cold zone—A case study of Harbin, China," Energy, Elsevier, vol. 185(C), pages 671-681.
    17. Yiqing Zhao & Renata Korsakienė & Hasan Dinçer & Serhat Yüksel, 2022. "Identifying Significant Points of Energy Culture for Developing Sustainable Energy Investments," SAGE Open, , vol. 12(1), pages 21582440221, March.
    18. Bhattacharyya, S.C. & Palit, D., 2021. "A critical review of literature on the nexus between central grid and off-grid solutions for expanding access to electricity in Sub-Saharan Africa and South Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Hartvigsson, Elias & Stadler, Michael & Cardoso, Gonçalo, 2018. "Rural electrification and capacity expansion with an integrated modeling approach," Renewable Energy, Elsevier, vol. 115(C), pages 509-520.
    20. Ramesh Kumar Arunachalam & Kumar Chandrasekaran & Eugen Rusu & Nagananthini Ravichandran & Hady H. Fayek, 2023. "Economic Feasibility of a Hybrid Microgrid System for a Distributed Substation," Sustainability, MDPI, vol. 15(4), pages 1-17, February.

    More about this item

    Keywords

    Techno-economic Analysis; Hybrid System; Temperature Coefficient; Fuel Consumption;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2020-06-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.