IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2017-03-07.html
   My bibliography  Save this article

Transforming Waste Management Operations to Green Energy Initiatives: Opportunities and Challenges

Author

Listed:
  • J. S. Wu

    (Department of Civil Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA,)

  • H. K. Tseng

    (Department of Economics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA,)

  • J. C. Ferrell

    (Department of Technology and Environmental Design, Appalachian State University, Boone, NC 28608, USA,)

  • X. Liu

    (Independent Consultant, Ellen Macarthur Foundation, Beijing, China)

Abstract

Emerging challenges for the landfill enterprise include the increasing difficulty in siting and permitting landfills, rising energy costs, and impending reduction in greenhouse gas (GHG) emissions. A roadmap is presented to overcome these challenges as well as transform landfill operations to green energy initiatives. A feasibility study including financial analysis was performed for electric energy production from the captured landfill gas, solarelectric energy from closed landfill cells, and bioenergy from buffer and idle lands bordering the landfilling areas. While the landfill- and solar-electric energy options are economically viable, the bioenergy option requires due consideration of production capacity and tax credit and incentives. Returns on investment can provide sustainable solid-waste tipping fees, offset funding required for post-closure expenses, and reduce GHG emissions without direct land-use change. Energy policies for carbon credits and tax incentives are critical elements to sustain the financing of green energy projects for the waste management industry.

Suggested Citation

  • J. S. Wu & H. K. Tseng & J. C. Ferrell & X. Liu, 2017. "Transforming Waste Management Operations to Green Energy Initiatives: Opportunities and Challenges," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 50-57.
  • Handle: RePEc:eco:journ2:2017-03-07
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/4647/2992
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/4647/2992
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tseng, Hui-Kuan & Wu, Jy S. & Liu, Xiaoshuai, 2013. "Affordability of electric vehicles for a sustainable transport system: An economic and environmental analysis," Energy Policy, Elsevier, vol. 61(C), pages 441-447.
    2. Bansal, Ankit & Illukpitiya, Prabodh & Singh, Surendra P. & Tegegne, Fisseha, 2013. "Economic competitiveness of ethanol production from cellulosic feedstock in Tennessee," Renewable Energy, Elsevier, vol. 59(C), pages 53-57.
    3. Pienaar, Johan & Brent, Alan C., 2012. "A model for evaluating the economic feasibility of small-scale biodiesel production systems for on-farm fuel usage," Renewable Energy, Elsevier, vol. 39(1), pages 483-489.
    4. Gardner, N. & Manley, B.J.W. & Pearson, J.M., 1993. "Gas emissions from landfills and their contributions to global warming," Applied Energy, Elsevier, vol. 44(2), pages 165-174.
    5. Milbrandt, Anelia R. & Heimiller, Donna M. & Perry, Andrew D. & Field, Christopher B., 2014. "Renewable energy potential on marginal lands in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 473-481.
    6. Rowe, Rebecca L. & Street, Nathaniel R. & Taylor, Gail, 2009. "Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 271-290, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingjun Guo & Yi Xu & Guangfu Liu & Tao Wang, 2019. "Understanding Firm Performance on Green Sustainable Practices through Managers’ Ascribed Responsibility and Waste Management: Green Self-Efficacy as Moderator," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    2. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artur Meynkhard, 2020. "Priorities of Russian Energy Policy in Russian-Chinese Relations," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 65-71.
    2. Jo o Marcos Mott Pavanelli & Alexandre Toshiro Igari, 2019. "Institutional Reproduction and Change: An Analytical Framework for Brazilian Electricity Generation Choices," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 252-263.
    3. Jaehyung An & Mikhail Dorofeev & Shouxian Zhu, 2020. "Development of Energy Cooperation between Russia and China," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 134-139.
    4. Anton Lisin, 2020. "Biofuel Energy in the Post-oil Era," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 194-199.
    5. Uyeh Daniel Dooyum & Alexey Mikhaylov & Igor Varyash, 2020. "Energy Security Concept in Russia and South Korea," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 102-107.
    6. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).
    7. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    8. Thomas Burkhardt & Diana Stepanova & Leonid Ratkin & Ismail Ismailov & Oleg Lavrushin & Natalia Sokolinskaya & Mir Sayed Shah Danish & Tomonobu Senjyu & Serhat Yuksel & Hasan Dincer, 2021. "Introduction of Biofuels as a Way of Solving Ecological Problems," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 187-193.
    9. Iqbal, Y. & Gauder, M. & Claupein, W. & Graeff-Hönninger, S. & Lewandowski, I., 2015. "Yield and quality development comparison between miscanthus and switchgrass over a period of 10 years," Energy, Elsevier, vol. 89(C), pages 268-276.
    10. David O. Yawson & Barry J. Mulholland & Tom Ball & Michael O. Adu & Sushil Mohan & Philip J. White, 2017. "Effect of Climate and Agricultural Land Use Changes on UK Feed Barley Production and Food Security to the 2050s," Land, MDPI, vol. 6(4), pages 1-14, October.
    11. Artur Meynkhard, 2020. "Long-Term Prospects for the Development Energy Complex of Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 224-232.
    12. Robert Perlack, Robert & Eaton, Lawrence & Thurhollow, Anthony & Langholtz, Matt & De La Torre Ugarte, Daniel, 2011. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry," MPRA Paper 89324, University Library of Munich, Germany, revised 2011.
    13. van der Hilst, F. & Lesschen, J.P. & van Dam, J.M.C. & Riksen, M. & Verweij, P.A. & Sanders, J.P.M. & Faaij, A.P.C., 2012. "Spatial variation of environmental impacts of regional biomass chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2053-2069.
    14. Manzone, Marco & Calvo, Angela, 2016. "Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy," Renewable Energy, Elsevier, vol. 86(C), pages 675-681.
    15. Chadwick, Dara T. & McDonnell, Kevin P. & Brennan, Liam P. & Fagan, Colette C. & Everard, Colm D., 2014. "Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 672-681.
    16. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    17. Wee, Sherilyn & Coffman, Makena & Allen, Scott, 2020. "EV driver characteristics: Evidence from Hawaii," Transport Policy, Elsevier, vol. 87(C), pages 33-40.
    18. Alexey Mikhaylov, 2020. "Geothermal Energy Development in Iceland," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 31-35.
    19. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    20. Hammond, Jim & Shackley, Simon & Sohi, Saran & Brownsort, Peter, 2011. "Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK," Energy Policy, Elsevier, vol. 39(5), pages 2646-2655, May.

    More about this item

    Keywords

    Landfill Operation; Renewable Energy; Greenhouse Gas; Environmental Economics;
    All these keywords.

    JEL classification:

    • P18 - Political Economy and Comparative Economic Systems - - Capitalist Economies - - - Energy; Environment
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q59 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2017-03-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.