IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2016-01-07.html
   My bibliography  Save this article

Volatility Transmission in Crude Oil, Gold, Standard and Poor s 500 and US Dollar Index Futures using Vector Autoregressive Multivariate Generalized Autoregressive Conditional Heteroskedasticity Model

Author

Listed:
  • Tanattrin Bunnag

    (Faculty of Science and Social Sciences, Burapha University, Thailand.)

Abstract

This paper examined volatility transmission in the crude oil, gold, S and P 500 and US Dollar Index futures. The data used in this study was the daily data from 2010 to 2015. The four vector autoregressive (VAR)-multivariate generalized autoregressive conditional heteroskedasticity models, namely the VAR (2)-diagonal VECH, the VAR (2)-diagonal Baba, Engle, Kraft and Kroner (BEKK), the VAR (2)-constant conditional correlations (CCC) and the VAR (2)-dynamic conditional correlation (DCC), were employed. The empirical results showed that the estimates of the VAR (2)-diagonal BEKK parameters were statistically significant in all cases. Later, the VAR (2)-diagonal VECH parameter were statistically significant in case of returns of crude oil (RCRUDE) with returns of gold futures (RGOLD), RGOLD with returns of Standard and Poor s 500 (S and P 500) futures (RSP) and RSP with returns of US Dollar Index (RUSD). At the same time the VAR (2)-CCC parameters were statistically significant in only case of RCRUDE with RGOLD. Finally, the VAR (2)-DCC were statistically significant in case of RCRUDE with RGOLD, RGOLD with RSP, RGOLD with RUSD and RSP with RUSD. In addition, we could conclude that the crude oil futures volatility was having an impact on the gold futures volatility, the gold futures volatility was having an impact on S and P 500 futures volatility, the gold futures volatility was having an impact on US Dollar Index futures volatility and S and P 500 futures volatility was having an impact on US Dollar Index futures volatility

Suggested Citation

  • Tanattrin Bunnag, 2016. "Volatility Transmission in Crude Oil, Gold, Standard and Poor s 500 and US Dollar Index Futures using Vector Autoregressive Multivariate Generalized Autoregressive Conditional Heteroskedasticity Model," International Journal of Energy Economics and Policy, Econjournals, vol. 6(1), pages 39-52.
  • Handle: RePEc:eco:journ2:2016-01-07
    as

    Download full text from publisher

    File URL: http://www.econjournals.com/index.php/ijeep/article/download/1554/1120
    Download Restriction: no

    File URL: http://www.econjournals.com/index.php/ijeep/article/view/1554/1120
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    2. Mensi, Walid & Beljid, Makram & Boubaker, Adel & Managi, Shunsuke, 2013. "Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold," Economic Modelling, Elsevier, vol. 32(C), pages 15-22.
    3. Tanattrin Bunnag, 2015. "Hedging Petroleum Futures with Multivariate GARCH Models," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 105-120.
    4. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    5. Nadhem Selmi & Nejib Hachicha, 2014. "Were Oil Price Markets the Source of Credit Crisis in European Countries? Evidence Using a VAR-MGARCH-DCC Model," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 169-177.
    6. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    7. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    8. Ewing, Bradley T. & Malik, Farooq, 2013. "Volatility transmission between gold and oil futures under structural breaks," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 113-121.
    9. Tanattrin Bunnag, 2015. "Volatility Transmission in Oil Futures Markets and Carbon Emissions Futures," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 647-659.
    10. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morema, Kgotso & Bonga-Bonga, Lumengo, 2018. "The impact of oil and gold price fluctuations on the South African equity market: volatility spillovers and implications for portfolio management," MPRA Paper 87637, University Library of Munich, Germany.
    2. Arfaoui Mongi & Haj Ali Dhouha, 2016. "Do Structural Breaks Affect Portfolio Designs and Hedging Strategies? International Evidence from Stock-Commodity Markets Linkages," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 252-270.
    3. El Hedi Arouri, Mohamed & Lahiani, Amine & Nguyen, Duc Khuong, 2015. "World gold prices and stock returns in China: Insights for hedging and diversification strategies," Economic Modelling, Elsevier, vol. 44(C), pages 273-282.
    4. Maghyereh, Aktham I. & Awartani, Basel & Tziogkidis, Panagiotis, 2017. "Volatility spillovers and cross-hedging between gold, oil and equities: Evidence from the Gulf Cooperation Council countries," Energy Economics, Elsevier, vol. 68(C), pages 440-453.
    5. Ahmad, Wasim & Sadorsky, Perry & Sharma, Amit, 2018. "Optimal hedge ratios for clean energy equities," Economic Modelling, Elsevier, vol. 72(C), pages 278-295.
    6. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    7. Eli Bouri & Andre Eid & Imad Kachacha, 2014. "The Dynamic Behaviour and Determinants of Linkages among Middle Eastern and North African Stock Exchanges," Economic Issues Journal Articles, Economic Issues, vol. 19(1), pages 1-22, March.
    8. Tanattrin Bunnag, 2015. "Volatility Transmission in Oil Futures Markets and Carbon Emissions Futures," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 647-659.
    9. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
    10. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, vol. 12(8), pages 1-24, April.
    11. Chia-Lin Chang & Michael McAleer & Guangdong Zuo, 2017. "Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA," Sustainability, MDPI, vol. 9(10), pages 1-22, October.
    12. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2018. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1002-1018.
    13. Văn, Lê & Bảo, Nguyễn Khắc Quốc, 2022. "The relationship between global stock and precious metals under Covid-19 and happiness perspectives," Resources Policy, Elsevier, vol. 77(C).
    14. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    15. Chia-Lin Chang & Michael McAleer & Yu-Ann Wang, 2016. "Modelling volatility spillovers for bio-ethanol, sugarcane and corn," Documentos de Trabajo del ICAE 2016-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    16. Tule, Moses K. & Ndako, Umar B. & Onipede, Samuel F., 2017. "Oil price shocks and volatility spillovers in the Nigerian sovereign bond market," Review of Financial Economics, Elsevier, vol. 35(C), pages 57-65.
    17. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & de Gracia, Fernando Perez, 2020. "Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness," Energy Economics, Elsevier, vol. 91(C).
    18. Chkili, Walid, 2016. "Dynamic correlations and hedging effectiveness between gold and stock markets: Evidence for BRICS countries," Research in International Business and Finance, Elsevier, vol. 38(C), pages 22-34.
    19. Gülin Vardar & Yener Coşkun & Tezer Yelkenci, 2018. "Shock transmission and volatility spillover in stock and commodity markets: evidence from advanced and emerging markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 8(2), pages 231-288, August.
    20. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.

    More about this item

    Keywords

    Volatility Transmission; crude oil futures; gold futures; S&P 500 futures; US Dollar Index futures; VAR-MGARCH;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2016-01-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.