IDEAS home Printed from https://ideas.repec.org/a/eco/journ1/2024-01-1.html
   My bibliography  Save this article

Estimating Value at Risk and Expected Shortfall: A Kalman Filter Approach

Author

Listed:
  • Max van der Lecq

    (School of Economics, University of Cape Town, Cape Town, South Africa)

  • Gary van Vuuren

    (Centre for Business Mathematics and Informatics, North-West University, Potchefstroom, 2351, South Africa)

Abstract

Value at Risk (VaR) estimates the maximum loss a portfolio may incur at a given confidence level over a specified time, while expected shortfall (ES) determines the probability weighted losses greater than VaR. VaR has recently been replaced by (but remains a crucial step in the computation of) ES by the Basel Committee on Banking Supervision (BCBS) as the primary metric for banks to forecast market risk and allocate the relevant amount of regulatory market risk capital. The aim of the study is to introduce a more accurate approach of measuring VaR and hence ES determined using loss forecast accuracy. VaR (hence ES) is unobservable and depends on subjective measures like volatility, more accurate (loss forecast) estimates of both are constantly sought. Modelling the volatility of asset returns as a stochastic process, so a Kalman filter (which distinguishes and isolates noise from data using Bayesian statistics and variance reduction) is used to estimate both market risk metrics. A variety of volatility estimates, including the Kalman filter's recursive approach, are used to measure VaR and ES. Loss forecast accuracy is then computed and compared. The Kalman filter produces the most accurate loss forecast estimates in periods of both calm and volatile markets. The Kalman filter provides the most accurate forecasts of future market risk losses compared with standard methods which results in more accurate provision of regulatory market risk capital.

Suggested Citation

  • Max van der Lecq & Gary van Vuuren, 2024. "Estimating Value at Risk and Expected Shortfall: A Kalman Filter Approach," International Journal of Economics and Financial Issues, Econjournals, vol. 14(1), pages 1-14, January.
  • Handle: RePEc:eco:journ1:2024-01-1
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijefi/article/download/15184/7640
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijefi/article/view/15184
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timothy A Krause & Yiuman Tse, 2016. "Risk management and firm value: recent theory and evidence," International Journal of Accounting & Information Management, Emerald Group Publishing Limited, vol. 24(1), pages 56-81, March.
    2. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    3. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    4. Y. Zhang & S. Nadarajah, 2018. "A review of backtesting for value at risk," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(15), pages 3616-3639, August.
    5. Storti, Giuseppe & Wang, Chao, 2022. "Nonparametric expected shortfall forecasting incorporating weighted quantiles," International Journal of Forecasting, Elsevier, vol. 38(1), pages 224-239.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    7. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    8. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    9. Sasa Zikovic & Randall Filer, 2009. "Hybrid Historical Simulation VaR and ES: Performance in Developed and Emerging Markets," CESifo Working Paper Series 2820, CESifo.
    10. Daniel Thomson & Gary van Vuuren, 2018. "Attribution of hedge fund returns using a Kalman filter," Applied Economics, Taylor & Francis Journals, vol. 50(9), pages 1043-1058, February.
    11. Thor Pajhede, 2015. "Backtesting Value-at-Risk: A Generalized Markov Framework," Discussion Papers 15-18, University of Copenhagen. Department of Economics.
    12. Fernando Caio Galdi & Leonel Molero Pereira, 2007. "Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility," Brazilian Business Review, Fucape Business School, vol. 4(1), pages 74-94, January.
    13. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Storti & Chao Wang, 2023. "Modeling uncertainty in financial tail risk: A forecast combination and weighted quantile approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1648-1663, November.
    2. Giuseppe Storti & Chao Wang, 2021. "Modelling uncertainty in financial tail risk: a forecast combination and weighted quantile approach," Papers 2104.04918, arXiv.org, revised Jul 2021.
    3. Lazar, Emese & Pan, Jingqi & Wang, Shixuan, 2024. "On the estimation of Value-at-Risk and Expected Shortfall at extreme levels," Journal of Commodity Markets, Elsevier, vol. 34(C).
    4. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    5. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    6. Chen, Cathy W.S. & Hsu, Hsiao-Yun & Watanabe, Toshiaki, 2023. "Tail risk forecasting of realized volatility CAViaR models," Finance Research Letters, Elsevier, vol. 51(C).
    7. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    8. Storti, Giuseppe & Wang, Chao, 2022. "Nonparametric expected shortfall forecasting incorporating weighted quantiles," International Journal of Forecasting, Elsevier, vol. 38(1), pages 224-239.
    9. Zhimin Wu & Guanghui Cai, 2024. "Can intraday data improve the joint estimation and prediction of risk measures? Evidence from a variety of realized measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1956-1974, September.
    10. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    11. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
    12. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
    13. Lazar, Emese & Xue, Xiaohan, 2020. "Forecasting risk measures using intraday data in a generalized autoregressive score framework," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1057-1072.
    14. Luca Merlo & Lea Petrella & Valentina Raponi, 2021. "Forecasting VaR and ES using a joint quantile regression and implications in portfolio allocation," Papers 2106.06518, arXiv.org.
    15. Owusu Junior, Peterson & Alagidede, Imhotep, 2020. "Risks in emerging markets equities: Time-varying versus spatial risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    16. Luigi Aldieri & Alessandra Amendola & Vincenzo Candila, 2023. "The Impact of ESG Scores on Risk Market Performance," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    17. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    18. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    19. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    20. Yun Feng & Weijie Hou & Yuping Song, 2024. "Tail risk forecasting and its application to margin requirements in the commodity futures market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1513-1529, August.

    More about this item

    Keywords

    Kalman filter; Value-at-Risk; Expected Shortfall;
    All these keywords.

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ1:2024-01-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.