IDEAS home Printed from https://ideas.repec.org/a/eco/journ1/2019-03-8.html
   My bibliography  Save this article

Interrelations in Saudi Stocks Market

Author

Listed:
  • Yassin Eltahir

    (College of Business, King Khalid University, KSA)

  • Fethi Klabi

    (College of Business, King Khalid University, KSA)

  • Osama Azmi Sallam

    (College of Business, King Khalid University, KSA)

  • Hussien Omer Osman

    (College of Business, King Khalid University, KSA)

Abstract

This study asks about the existence of co-variances and correlations among variances in the Saudi stock returns and aims at knowing which stocks are the most closely related to other stocks. A sample of five stocks representing basic materials, banking, services, food and transport sectors and reflecting the main trends in the Saudi market were selected (SABIC, Al Rajhi, Etisalat, Almarai and Al Bahri respectively). Daily stock returns were collected during the period from 2011 to 2016, representing the life of the five-year plan. The authors used the MARCH-DVEC methodology to estimate the variances and correlations of stock return variances, considering the interactions of stock return variances. The results confirmed the existence of positive co-variances and correlations between stock returns. Al Rajhi, Sabic and Etisalat stock returns showed the largest co-variances and correlations. The general trend values of co-variances indicated positive growth except for Al Bahri. This study concluded that relations between Saudi stocks are stable over time, confirming the Saudi stocks market stability.

Suggested Citation

  • Yassin Eltahir & Fethi Klabi & Osama Azmi Sallam & Hussien Omer Osman, 2019. "Interrelations in Saudi Stocks Market," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 91-97.
  • Handle: RePEc:eco:journ1:2019-03-8
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijefi/article/download/7542/pdf
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijefi/article/view/7542/pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    2. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    3. Shah Saeed Hassan Chowdhury & M. Arifur Rahman & M. Shibley Sadique, 2017. "Stock return autocorrelation, day of the week and volatility," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 16(2), pages 218-238, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    2. Silvo Dajcman & Mejra Festic & Alenka Kavkler, 2012. "European stock market comovement dynamics during some major financial market turmoils in the period 1997 to 2010 -- a comparative DCC-GARCH and wavelet correlation analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 19(13), pages 1249-1256, September.
    3. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    4. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    5. Kuper, Gerard H. & Lestano, 2007. "Dynamic conditional correlation analysis of financial market interdependence: An application to Thailand and Indonesia," Journal of Asian Economics, Elsevier, vol. 18(4), pages 670-684, August.
    6. Maximilian-Benedikt Herwarth Kohn & Pedro L. Valls Pereira, 2017. "Speculative bubbles and contagion: Analysis of volatility’s clusters during the DotCom bubble based on the dynamic conditional correlation model," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1411453-141, January.
    7. Emerson Fernandes Marcal & Pedro Valls Pereira & Diogenes Manoel Leiva Martin & Wilson Toshiro Nakamura, 2011. "Evaluation of contagion or interdependence in the financial crises of Asia and Latin America, considering the macroeconomic fundamentals," Applied Economics, Taylor & Francis Journals, vol. 43(19), pages 2365-2379.
    8. Themistoclis Pantos & Stathis Polyzos & Aggelos Armenatzoglou & Ilias Kampouris, 2019. "Volatility Spillovers in Electricity Markets: Evidence from the United States," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 131-143.
    9. Kin-Yip Ho & Albert K Tsui, 2008. "Volatility Dynamics in Foreign Exchange Rates : Further Evidence from the Malaysian Ringgit and Singapore Dollar," Finance Working Papers 22571, East Asian Bureau of Economic Research.
    10. Marçal, Emerson Fernandes & Pereira, Pedro L. Valls, 2008. "Testing the Hypothesis of Contagion Using Multivariate Volatility Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 28(2), November.
    11. Rahim, Adam Mohamed & Masih, Mansur, 2016. "Portfolio diversification benefits of Islamic investors with their major trading partners: Evidence from Malaysia based on MGARCH-DCC and wavelet approaches," Economic Modelling, Elsevier, vol. 54(C), pages 425-438.
    12. Harris, Richard D.F. & Mazibas, Murat, 2010. "Dynamic hedge fund portfolio construction," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 351-357, December.
    13. Kamel Malik Bensafta & Gervasio Semedo, 2014. "Market Volatility Transmission and Central Banking: What Happened during the Subprime Crisis?," International Economic Journal, Taylor & Francis Journals, vol. 28(4), pages 559-588, December.
    14. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    15. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    16. Annastiina Silvennoinen & Timo Teräsvirta, 2009. "Modeling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 373-411, Fall.
    17. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    18. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
    19. Gargallo, Pilar & Lample, Luis & Miguel, Jesús A. & Salvador, Manuel, 2024. "Sequential management of energy and low-carbon portfolios," Research in International Business and Finance, Elsevier, vol. 69(C).
    20. Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007-23, Christian-Albrechts-University of Kiel, Department of Economics.

    More about this item

    Keywords

    Stock return variance; M GARCH-VEC; Correlation; Co-variance;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ1:2019-03-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.