IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v77y2009i1p93-105.html
   My bibliography  Save this article

The Complexity of Forecast Testing

Author

Listed:
  • Lance Fortnow
  • Rakesh V. Vohra

Abstract

Consider a weather forecaster predicting a probability of rain for the next day. We consider tests that, given a finite sequence of forecast predictions and outcomes, will either pass or fail the forecaster. Sandroni showed that any test which passes a forecaster who knows the distribution of nature can also be probabilistically passed by a forecaster with no knowledge of future events. We look at the computational complexity of such forecasters and exhibit a linear-time test and distribution of nature such that any forecaster without knowledge of the future who can fool the test must be able to solve computationally difficult problems. Thus, unlike Sandroni's work, a computationally efficient forecaster cannot always fool this test independently of nature. Copyright 2009 The Econometric Society.

Suggested Citation

  • Lance Fortnow & Rakesh V. Vohra, 2009. "The Complexity of Forecast Testing," Econometrica, Econometric Society, vol. 77(1), pages 93-105, January.
  • Handle: RePEc:ecm:emetrp:v:77:y:2009:i:1:p:93-105
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3982/ECTA7163
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dean Foster & Rakesh Vohra, 2011. "Calibration: Respice, Adspice, Prospice," Discussion Papers 1537, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Griffiths, William E. & Newton, Lisa S. & O'Donnell, Christopher J., 2010. "Predictive densities for models with stochastic regressors and inequality constraints: Forecasting local-area wheat yield," International Journal of Forecasting, Elsevier, vol. 26(2), pages 397-412, April.
    3. Olszewski, Wojciech, 2015. "Calibration and Expert Testing," Handbook of Game Theory with Economic Applications,, Elsevier.
    4. Kavaler, Itay & Smorodinsky, Rann, 2019. "On comparison of experts," Games and Economic Behavior, Elsevier, vol. 118(C), pages 94-109.
    5. Ronen Gradwohl & Eran Shmaya, 2013. "Tractable Falsifiability," Discussion Papers 1564, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    6. Al-Najjar, Nabil I. & Sandroni, Alvaro & Smorodinsky, Rann & Weinstein, Jonathan, 2010. "Testing theories with learnable and predictive representations," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2203-2217, November.
    7. Marinovic, Iván & Ottaviani, Marco & Sorensen, Peter, 2013. "Forecasters’ Objectives and Strategies," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 690-720, Elsevier.
    8. Itay Kavaler & Rann Smorodinsky, 2019. "A Cardinal Comparison of Experts," Papers 1908.10649, arXiv.org, revised Feb 2020.
    9. , & ,, 2013. "Expressible inspections," Theoretical Economics, Econometric Society, vol. 8(2), May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:77:y:2009:i:1:p:93-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.