IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v59y1991i5p1249-77.html
   My bibliography  Save this article

Monte Carlo Methodology and the Finite Sample Properties of Instrumental Variables Statistics for Testing Nested and Non-nested Hypotheses

Author

Listed:
  • Ericsson, Neil R

Abstract

Using Monte Carlo methodology, this paper investigates the effect of dynamics and simultaneity on the finite sample properties of instrumental variables statistics for testing nested and nonnested hypotheses. Simple numerical-analytical formulae (response surfaces) are obtained which closely approximate the statistics' unknown size and power functions for a dynamic simultaneous-equations model. The analysis illustrates the value and limitations of asymptotic theory in interpreting finite sample properties. Two practical results arise. The F form and the Wald statistic is favored over its chi-squared form, and "large-sigma" and small "effective" sample size strongly affect the test of over-identifying restrictions and the Cox-type test. Copyright 1991 by The Econometric Society.

Suggested Citation

  • Ericsson, Neil R, 1991. "Monte Carlo Methodology and the Finite Sample Properties of Instrumental Variables Statistics for Testing Nested and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 59(5), pages 1249-1277, September.
  • Handle: RePEc:ecm:emetrp:v:59:y:1991:i:5:p:1249-77
    as

    Download full text from publisher

    File URL: http://links.jstor.org/sici?sici=0012-9682%28199109%2959%3A5%3C1249%3AMCMATF%3E2.0.CO%3B2-8&origin=repec
    File Function: full text
    Download Restriction: Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. Javier Trivez & Beatriz Catalan, 2009. "Detecting level shifts in ARMA-GARCH (1,1) Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(6), pages 679-697.
    2. Chistiano, Lawrence J & den Haan, Wouter J, 1996. "Small-Sample Properties of GMM for Business-Cycle Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 309-327, July.
    3. Neil R. Ericsson & James G. MacKinnon, 2002. "Distributions of error correction tests for cointegration," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, June.
    4. Lawford, Steve & Stamatogiannis, Michalis P., 2009. "The finite-sample effects of VAR dimensions on OLS bias, OLS variance, and minimum MSE estimators," Journal of Econometrics, Elsevier, vol. 148(2), pages 124-130, February.
    5. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    6. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    7. Campos, Julia & Ericsson, Neil R. & Hendry, David F., 1996. "Cointegration tests in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 70(1), pages 187-220, January.
    8. McAleer, Michael, 1995. "The significance of testing empirical non-nested models," Journal of Econometrics, Elsevier, vol. 67(1), pages 149-171, May.
    9. Diebold, Francis X. & Chen, Celia, 1996. "Testing structural stability with endogenous breakpoint A size comparison of analytic and bootstrap procedures," Journal of Econometrics, Elsevier, vol. 70(1), pages 221-241, January.
    10. Taylor, Mark P. & Sarno, Lucio, 1998. "The behavior of real exchange rates during the post-Bretton Woods period," Journal of International Economics, Elsevier, vol. 46(2), pages 281-312, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:59:y:1991:i:5:p:1249-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.