IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-22-00768.html
   My bibliography  Save this article

A bootstrap test of the time-varying efficiency of German growth forecasts

Author

Listed:
  • Christian Pierdzioch

    (Helmut-Schmidt-University Hamburg)

Abstract

I use a bootstrap approach to re-examine the time-varying efficiency of growth forecasts for Germany. I argue that, given this small sample of forecasts, the bootstrap approach renders it possible to trace out with more precision than a standard full-sample forecast-efficiency-regression model whether forecasts were efficient at any given point in time. As an empirical application of the bootstrap approach, I present results for six-months-ahead and one-year-ahead growth forecasts published by three German economic research institutes during the sample period 1970$-$2018. The results illustrate that the bootstrap approach, for various configurations of the forecast-efficiency-regression model, yields stronger evidence against forecast efficiency than a conventional full-sample model.

Suggested Citation

  • Christian Pierdzioch, 2023. "A bootstrap test of the time-varying efficiency of German growth forecasts," Economics Bulletin, AccessEcon, vol. 43(1), pages 679-687.
  • Handle: RePEc:ebl:ecbull:eb-22-00768
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2023/Volume43/EB-23-V43-I1-P56.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ullrich Heilemann & Herman O. Stekler, 2013. "Has The Accuracy of Macroeconomic Forecasts for Germany Improved?," German Economic Review, Verein für Socialpolitik, vol. 14(2), pages 235-253, May.
    2. Holden, K & Peel, D A, 1990. "On Testing for Unbiasedness and Efficiency of Forecasts," The Manchester School of Economic & Social Studies, University of Manchester, vol. 58(2), pages 120-127, June.
    3. Alexander Foltas & Christian Pierdzioch, 2022. "On the efficiency of German growth forecasts: an empirical analysis using quantile random forests and density forecasts," Applied Economics Letters, Taylor & Francis Journals, vol. 29(17), pages 1644-1653, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    2. Hans Christian Müller-Dröge & Tara M. Sinclair & Herman O. Stekler, 2014. "Evaluating Forecasts Of A Vector Of Variables: A German Forecasting Competition," Working Papers 2014-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    3. Behrens, Christoph, 2020. "German trade forecasts since 1970: An evaluation using the panel dimension," Working Papers 26, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    4. Ullrich Heilemann & Karsten Müller, 2018. "Wenig Unterschiede – Zur Treffsicherheit Internationaler Prognosen und Prognostiker [Few differences—on the accuracy of international forecasts and forecaster]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 12(3), pages 195-233, December.
    5. Jörg Döpke & Ulrich Fritsche & Karsten Müller, 2018. "Has Macroeconomic Forecasting changed after the Great Recession? - Panel-based Evidence on Accuracy and Forecaster Behaviour from Germany," Macroeconomics and Finance Series 201803, University of Hamburg, Department of Socioeconomics.
    6. Behrens, Christoph, 2019. "Evaluating the Joint Efficiency of German Trade Forecasts. A nonparametric multivariate approach," Working Papers 9, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    7. Alexander Foltas & Christian Pierdzioch, 2022. "Business-cycle reports and the efficiency of macroeconomic forecasts for Germany," Applied Economics Letters, Taylor & Francis Journals, vol. 29(10), pages 867-872, June.
    8. Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
    9. Pierdzioch, Christian, 2023. "A bootstrap-based efficiency test of growth and inflation forecasts for Germany," Economics Letters, Elsevier, vol. 224(C).
    10. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    11. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    12. Granziera, Eleonora & Jalasjoki, Pirkka & Paloviita, Maritta, 2024. "The bias of the ECB inflation projections: A State-dependent analysis," Bank of Finland Research Discussion Papers 4/2024, Bank of Finland.
    13. Tara M. Sinclair & Fred Joutz & Herman O. Stekler, 2008. "Are 'unbiased' forecasts really unbiased? Another look at the Fed forecasts," Working Papers 2008-010, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    14. repec:zbw:rwidps:0051 is not listed on IDEAS
    15. Wolfgang Nierhaus, 2014. "Wirtschaftskonjunktur 2013: Prognose und Wirklichkeit," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 67(02), pages 41-46, January.
    16. Artur C. B. Da Silva Lopes, 1998. "On the 'restricted cointegration test' as a test of the rational expectations hypothesis," Applied Economics, Taylor & Francis Journals, vol. 30(2), pages 269-278, February.
    17. Jia, Pengfei & Shen, Haopeng & Zheng, Shikun, 2023. "Monetary policy rules and opinionated markets," Economics Letters, Elsevier, vol. 223(C).
    18. Sinclair, Tara M., 2019. "Characteristics and implications of Chinese macroeconomic data revisions," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1108-1117.
    19. Ulrich Heilemann & Susanne Schnorr-Bäcker, 2016. "Could The Start Of The German Recession 2008-2009 Have Been Foreseen? Evidence From Real-Time Data," Working Papers 2016-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    20. Lundholm, Michael, 2010. "Are Inflation Forecasts from Major Swedish Forecasters Biased?," Research Papers in Economics 2010:10, Stockholm University, Department of Economics.
    21. Dimitrios Papastamos & Fotis Mouzakis & Simon Stevenson, 2014. "Rationality and Momentum in Real Estate Investment Forecasts," Real Estate & Planning Working Papers rep-wp2014-07, Henley Business School, University of Reading.

    More about this item

    Keywords

    Forecast efficiency; Bootstrap; Growth; Germany;
    All these keywords.

    JEL classification:

    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-22-00768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.