IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-19-00670.html
   My bibliography  Save this article

Further evidence on sparse grids-based numerical integration in the mixed logit model

Author

Listed:
  • Zsolt Sándor

    (Sapientia Hungarian University of Transylvania)

Abstract

We study the performance of Gauss quadrature methods based on sparse grids for approximating integrals involved in mixed logit models. In Monte Carlo experiments we consider data generating processes in which consumer heterogeneity has low variance and data generating processes in which it has high variance. In the former case we find that, in line with previous literature, sparse grids produce very accurate estimates even when the number of points used for approximating integrals is small. However, in the latter case sparse grids yield biased estimates and are outperformed by quasi-Monte Carlo methods.

Suggested Citation

  • Zsolt Sándor, 2019. "Further evidence on sparse grids-based numerical integration in the mixed logit model," Economics Bulletin, AccessEcon, vol. 39(4), pages 2726-2731.
  • Handle: RePEc:ebl:ecbull:eb-19-00670
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2019/Volume39/EB-19-V39-I4-P254.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sándor, Zsolt & Train, Kenneth, 2004. "Quasi-random simulation of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 313-327, May.
    2. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    3. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    5. Chiou, Lesley & Walker, Joan L., 2007. "Masking identification of discrete choice models under simulation methods," Journal of Econometrics, Elsevier, vol. 141(2), pages 683-703, December.
    6. Brunner, Daniel & Heiss, Florian & Romahn, André & Weiser, Constantin, 2017. "Reliable estimation of random coefficient logit demand models," DICE Discussion Papers 267, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prateek Bansal & Vahid Keshavarzzadeh & Angelo Guevara & Shanjun Li & Ricardo A Daziano, 2022. "Designed quadrature to approximate integrals in maximum simulated likelihood estimation [Evaluating simulation-based approaches and multivariate quadrature on sparse grids in estimating multivariat," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 301-321.
    2. Czajkowski, Mikołaj & Budziński, Wiktor, 2019. "Simulation error in maximum likelihood estimation of discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 73-85.
    3. Cherchi, Elisabetta & Guevara, Cristian Angelo, 2012. "A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance–covariance matrix," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 321-332.
    4. Christopher Conlon & Jeff Gortmaker, 2020. "Best practices for differentiated products demand estimation with PyBLP," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 1108-1161, December.
    5. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    6. Staus, Alexander, 2008. "Standard and Shuffled Halton Sequences in a Mixed Logit Model," Working Papers 93856, Universitaet Hohenheim, Institute of Agricultural Policy and Agricultural Markets.
    7. Xiaodong Gong & Robert Breunig, 2017. "Childcare Assistance: Are Subsidies or Tax Credits Better?," Fiscal Studies, Institute for Fiscal Studies, vol. 38, pages 7-48, March.
    8. Xiaodong Gong, 2017. "The dynamics of study-work choice and its effect on intended and actual university attainment," Education Economics, Taylor & Francis Journals, vol. 25(6), pages 619-639, November.
    9. Ek, Kristina & Persson, Lars, 2014. "Wind farms — Where and how to place them? A choice experiment approach to measure consumer preferences for characteristics of wind farm establishments in Sweden," Ecological Economics, Elsevier, vol. 105(C), pages 193-203.
    10. Sarrias, Mauricio, 2016. "Discrete Choice Models with Random Parameters in R: The Rchoice Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i10).
    11. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    12. Stéphane Turolla, 2016. "Spatial Competition in the French Supermarket Industry," Annals of Economics and Statistics, GENES, issue 121-122, pages 213-259.
    13. Junyi Shen, 2009. "Latent class model or mixed logit model? A comparison by transport mode choice data," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2915-2924.
    14. Junyi Shen & Yusuke Sakata & Yoshizo Hashimoto, 2006. "A Comparison between Latent Class Model and Mixed Logit Model for Transport Mode Choice: Evidences from Two Datasets of Japan," Discussion Papers in Economics and Business 06-05, Osaka University, Graduate School of Economics.
    15. Bastin, Fabian & Cirillo, Cinzia & Toint, Philippe L., 2006. "Application of an adaptive Monte Carlo algorithm to mixed logit estimation," Transportation Research Part B: Methodological, Elsevier, vol. 40(7), pages 577-593, August.
    16. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    17. Dana Goldman & John A. Romley, 2008. "Hospitals As Hotels: The Role of Patient Amenities in Hospital Demand," NBER Working Papers 14619, National Bureau of Economic Research, Inc.
    18. Xiaodong Gong & Robert Breuing, 2011. "Estimating Net Child Care Price Elasticities of Partnered Women With Pre-School Children Using a Discrete Structural Labour Supply-Child Care Model," CEPR Discussion Papers 653, Centre for Economic Policy Research, Research School of Economics, Australian National University.
    19. Train, Kenneth & Wilson, Wesley W., 2008. "Estimation on stated-preference experiments constructed from revealed-preference choices," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 191-203, March.
    20. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.

    More about this item

    Keywords

    discrete choice; random coefficients; simulation; quasi-Monte Carlo; panel;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-19-00670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.