IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-10-00362.html
   My bibliography  Save this article

Noise traders or Fundamentalists? A Wavelet approach

Author

Listed:
  • François Benhmad

    (LAMETA)

Abstract

According to market heterogeneity hypothesis, financial markets are characterized by the presence of heterogeneity of participants with different sensibilities to different time scales. Although Wavelet based Value at Risk is able to represent dealing frequencies of market participants, it doesn't explicitly take into account the presence of Noise traders and Fundamentalists. In this paper, we introduce a Wavelet Value at Risk model which make a clear distinction between the two categories of traders. Thus, WVaR of Fundamentalists shows good performance especially in a high volatility regime as the one which has occurred in 2008

Suggested Citation

  • François Benhmad, 2011. "Noise traders or Fundamentalists? A Wavelet approach," Economics Bulletin, AccessEcon, vol. 31(1), pages 782-791.
  • Handle: RePEc:ebl:ecbull:eb-10-00362
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2011/Volume31/EB-11-V31-I1-P75.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benhmad, François, 2013. "Dynamic cyclical comovements between oil prices and US GDP: A wavelet perspective," Energy Policy, Elsevier, vol. 57(C), pages 141-151.
    2. Benhmad, François, 2013. "Bull or bear markets: A wavelet dynamic correlation perspective," Economic Modelling, Elsevier, vol. 32(C), pages 576-591.
    3. BEN ABDALLAH Mohamed & TALBI Omar, 2024. "A Wavelet Analysis of Bitcoin Price Volatility Dynamic," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(1), pages 951-964, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    2. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    3. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    4. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    5. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    6. van Eyden, Reneé & Gupta, Rangan & Nielsen, Joshua & Bouri, Elie, 2023. "Investor sentiment and multi-scale positive and negative stock market bubbles in a panel of G7 countries," Journal of Behavioral and Experimental Finance, Elsevier, vol. 38(C).
    7. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    8. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    9. Harvey, Andrew & Palumbo, Dario, 2023. "Score-driven models for realized volatility," Journal of Econometrics, Elsevier, vol. 237(2).
    10. Prat, Georges, 2013. "Equity risk premium and time horizon: What do the U.S. secular data say?," Economic Modelling, Elsevier, vol. 34(C), pages 76-88.
    11. Ballocchi, Giuseppe & Dacorogna, Michel M. & Hopman, Carl M. & Muller, Ulrich A. & Olsen, Richard B., 1999. "The intraday multivariate structure of the Eurofutures markets," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 479-513, December.
    12. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    13. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    14. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2012. "The fine-structure of volatility feedback I: multi-scale self-reflexivity," Papers 1206.2153, arXiv.org, revised Sep 2013.
    15. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    16. Todea, Alexandru, 2016. "Cross-correlations between volatility, volatility persistence and stock market integration: the case of emergent stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 208-215.
    17. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    18. Golosnoy, Vasyl & Hamid, Alain & Okhrin, Yarema, 2014. "The empirical similarity approach for volatility prediction," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 321-329.
    19. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    20. Beum-Jo Park, 2011. "Forecasting Volatility in Financial Markets Using a Bivariate Stochastic Volatility Model with Surprising Information," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 37-58, September.

    More about this item

    Keywords

    Wavelet Value at Risk; Heterogeneity; Noise traders; Fundamentalists;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-10-00362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.