Long Memory Features in Return and Volatility of the Malaysian Stock Market
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Cunado, J. & Gil-Alana, L.A. & Gracia, Fernando Perez de, 2010. "Mean reversion in stock market prices: New evidence based on bull and bear markets," Research in International Business and Finance, Elsevier, vol. 24(2), pages 113-122, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Quynh-Trang Nguyen & John Francis Diaz & Jo-Hui Chen & Ming-Yen Lee, 2019. "Fractional Integration in Corporate Social Responsibility Indices: A FIGARCH and HYGARCH Approach," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(7), pages 836-850, July.
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023.
"A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting,"
Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2020. "Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Working Papers 202056, University of Pretoria, Department of Economics.
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2020. "Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Working papers 2020-10, University of Connecticut, Department of Economics.
- John Francis Diaz & Jo-Hui Chen, 2017. "Testing for Long-memory and Chaos in the Returns of Currency Exchange-traded Notes (ETNs)," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(4), pages 1-2.
- Rim Ammar Lamouchi, 2020. "Long Memory and Stock Market Efficiency: Case of Saudi Arabia," International Journal of Economics and Financial Issues, Econjournals, vol. 10(3), pages 29-34.
- Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
- Argel S. Masa & John Francis T. Diaz, 2017. "Long-memory Modelling and Forecasting of the Returns and Volatility of Exchange-traded Notes (ETNs)," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 11(1), pages 23-53, February.
- Tripathy, Naliniprava, 2022. "Long memory and volatility persistence across BRICS stock markets," Research in International Business and Finance, Elsevier, vol. 63(C).
- Muhammad Naeem & Hao Ji & Brunero Liseo, 2014. "Negative Return-Volume Relationship in Asian Stock Markets: Figarch-Copula Approach," Eurasian Journal of Economics and Finance, Eurasian Publications, vol. 2(2), pages 1-20.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jalan, Akanksha & Matkovskyy, Roman & Potì, Valerio, 2022.
"Shall the winning last? A study of recent bubbles and persistence,"
Finance Research Letters, Elsevier, vol. 45(C).
- Akanksha Jalan & Roman Matkovskyy & Valerio Potì, 2022. "Shall the winning last? A study of recent bubbles and persistence," Post-Print hal-03603161, HAL.
- Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Wang, Juan & Zhang, Dongxiang & Zhang, Jian, 2015. "Mean reversion in stock prices of seven Asian stock markets: Unit root test and stationary test with Fourier functions," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 157-164.
- Zegadło, Piotr, 2022. "Identifying bull and bear market regimes with a robust rule-based method," Research in International Business and Finance, Elsevier, vol. 60(C).
- Corbet, Shaen & Katsiampa, Paraskevi, 2020. "Asymmetric mean reversion of Bitcoin price returns," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
- Shue-Jen Wu & Wei-Ming Lee, 2012. "Predicting the U.S. bear stock market using the consumption-wealth ratio," Economics Bulletin, AccessEcon, vol. 32(4), pages 3174-3181.
More about this item
Keywords
long memory property; leverage effect; ARFIMA-G(ARCH) models;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- G0 - Financial Economics - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-10-00299. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.