IDEAS home Printed from https://ideas.repec.org/e/pis54.html
   My authors  Follow this author

Mohammad Tariqul Islam Khan

Personal Details

First Name:Mohammad Tariqul
Middle Name:
Last Name:Islam Khan
Suffix:
RePEc Short-ID:pis54

Affiliation

Faculty of Management
Multimedia University

Cyberjaya, Malaysia
http://fom.mmu.edu.my/
RePEc:edi:fmmmumy (more details at EDIRC)

Research output

as
Jump to: Articles

Articles

  1. Siow-Hooi Tan & Mohammad Tariqul Islam Khan, 2010. "Long Memory Features in Return and Volatility of the Malaysian Stock Market," Economics Bulletin, AccessEcon, vol. 30(4), pages 3267-3281.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Siow-Hooi Tan & Mohammad Tariqul Islam Khan, 2010. "Long Memory Features in Return and Volatility of the Malaysian Stock Market," Economics Bulletin, AccessEcon, vol. 30(4), pages 3267-3281.

    Cited by:

    1. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2020. "Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Working papers 2020-10, University of Connecticut, Department of Economics.
    2. Argel S. Masa & John Francis T. Diaz, 2017. "Long-memory Modelling and Forecasting of the Returns and Volatility of Exchange-traded Notes (ETNs)," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 11(1), pages 23-53, February.
    3. Muhammad Naeem & Hao Ji & Brunero Liseo, 2014. "Negative Return-Volume Relationship in Asian Stock Markets: Figarch-Copula Approach," Eurasian Journal of Economics and Finance, Eurasian Publications, vol. 2(2), pages 1-20.
    4. Rim Ammar Lamouchi, 2020. "Long Memory and Stock Market Efficiency: Case of Saudi Arabia," International Journal of Economics and Financial Issues, Econjournals, vol. 10(3), pages 29-34.
    5. Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
    6. Tripathy, Naliniprava, 2022. "Long memory and volatility persistence across BRICS stock markets," Research in International Business and Finance, Elsevier, vol. 63(C).
    7. John Francis Diaz & Jo-Hui Chen, 2017. "Testing for Long-memory and Chaos in the Returns of Currency Exchange-traded Notes (ETNs)," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(4), pages 1-2.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Mohammad Tariqul Islam Khan should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.