IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-06d80016.html
   My bibliography  Save this article

Why Do Pooled Forecasts Do Better Than Individual Forecasts Ex Post?

Author

Listed:
  • Diego Nocetti

    (Clarkson University)

  • William T. Smith

    (The University of Memphis)

Abstract

Pooled forecasts frequently outperform individual forecasts of economic time series. This paper shows that the introduction of model uncertainty into the formation of expectations can account for the regularity. We conjecture that agents learn in a Bayesian way, using an optimally designed combination of forecasts to form expectations. When these expectations alter the ex-post realization of the data generating mechanism the pooled forecast may dominate the best individual device.

Suggested Citation

  • Diego Nocetti & William T. Smith, 2006. "Why Do Pooled Forecasts Do Better Than Individual Forecasts Ex Post?," Economics Bulletin, AccessEcon, vol. 4(36), pages 1-7.
  • Handle: RePEc:ebl:ecbull:eb-06d80016
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/pubs/EB/2006/Volume4/EB-06D80016A.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    2. Brock, William A. & Durlauf, Steven N. & West, Kenneth D., 2007. "Model uncertainty and policy evaluation: Some theory and empirics," Journal of Econometrics, Elsevier, vol. 136(2), pages 629-664, February.
    3. Timothy Cogley & Thomas J. Sargent, 2005. "The conquest of US inflation: Learning and robustness to model uncertainty," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 528-563, April.
    4. Min, Chung-ki & Zellner, Arnold, 1993. "Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
    5. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    6. Avramov, Doron, 2002. "Stock return predictability and model uncertainty," Journal of Financial Economics, Elsevier, vol. 64(3), pages 423-458, June.
    7. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    8. Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
    9. Bray, Margaret M & Savin, Nathan E, 1986. "Rational Expectations Equilibria, Learning, and Model Specification," Econometrica, Econometric Society, vol. 54(5), pages 1129-1160, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolsko-Rzhevskyy, Alex, 2008. "Monetary Policy Evaluation in Real Time: Forward-Looking Taylor Rules Without Forward-Looking Data," MPRA Paper 11352, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ebl:ecbull:v:4:y:2006:i:36:p:1-7 is not listed on IDEAS
    2. Jonathan H. Wright, 2009. "Forecasting US inflation by Bayesian model averaging," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 131-144.
    3. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
    4. Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
    5. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    6. Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach, Second Version," PIER Working Paper Archive 13-061, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 03 Sep 2013.
    7. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
    8. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    9. Brock, William A. & Durlauf, Steven N. & West, Kenneth D., 2007. "Model uncertainty and policy evaluation: Some theory and empirics," Journal of Econometrics, Elsevier, vol. 136(2), pages 629-664, February.
    10. Kilian, Lutz & Inoue, Atsushi, 2005. "How Useful is Bagging in Forecasting Economic Time Series? A Case Study of US CPI Inflation," CEPR Discussion Papers 5304, C.E.P.R. Discussion Papers.
    11. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    12. Brock,W.A. & Durlauf,S.N., 2004. "Macroeconomics and model uncertainty," Working papers 20, Wisconsin Madison - Social Systems.
    13. Cosmin Ilut, 2012. "Ambiguity Aversion: Implications for the Uncovered Interest Rate Parity Puzzle," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 33-65, July.
    14. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05r, Department of Economics, University of Birmingham.
    15. Moral-Benito, Enrique, 2010. "Model averaging in economics," MPRA Paper 26047, University Library of Munich, Germany.
    16. Vanina Forget, 2012. "Doing well and doing good: a multi-dimensional puzzle," Working Papers hal-00672037, HAL.
    17. Steven N. Durlauf & Andros Kourtellos & Chih Ming Tan, 2012. "Is God in the details? A reexamination of the role of religion in economic growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1059-1075, November.
    18. Lorenzo Bencivelli & Massimiliano Marcellino & Gianluca Moretti, 2017. "Forecasting economic activity by Bayesian bridge model averaging," Empirical Economics, Springer, vol. 53(1), pages 21-40, August.
    19. Durlauf, Steven N. & Navarro, Salvador & Rivers, David A., 2016. "Model uncertainty and the effect of shall-issue right-to-carry laws on crime," European Economic Review, Elsevier, vol. 81(C), pages 32-67.
    20. Arie Preminger & Uri Ben-zion & David Wettstein, 2007. "The extended switching regression model: allowing for multiple latent state variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(7), pages 457-473.
    21. Ley, Eduardo & Steel, Mark F. J., 2007. "On the effect of prior assumptions in Bayesian model averaging with applications to growth regression," Policy Research Working Paper Series 4238, The World Bank.

    More about this item

    Keywords

    Expectations;

    JEL classification:

    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-06d80016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.