IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-01c50001.html
   My bibliography  Save this article

Latent Leading and Coincident Factors Model with Markov-Switching Dynamics

Author

Listed:
  • Konstantin Kholodilin

    (Institut des recherches économiques et sociales)

Abstract

This paper introduces a two-factor model of leading and coincident economic indicators. The common leading factor is assumed to Granger-cause the common coincident factor. This property is used to estimate the two common factors simultaneously and hence more efficiently. Two models of the latent leading and coincident factors are studied: a model with linear dynamics and a model with Markov-switching dynamics introduced through the leading factor intercept term. The first model encompasses the comovements between the individual time series. The second model, moreover, takes care of possible asymmetries between the business cycle regimes.

Suggested Citation

  • Konstantin Kholodilin, 2001. "Latent Leading and Coincident Factors Model with Markov-Switching Dynamics," Economics Bulletin, AccessEcon, vol. 3(7), pages 1-13.
  • Handle: RePEc:ebl:ecbull:eb-01c50001
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/pubs/EB/2001/Volume3/EB-01C50001A.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chauvet, Marcelle & Potter, Simon, 2000. "Coincident and leading indicators of the stock market," Journal of Empirical Finance, Elsevier, vol. 7(1), pages 87-111, May.
    2. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    3. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    4. James H. Stock & Mark W. Watson, 1988. "A Probability Model of The Coincident Economic Indicators," NBER Working Papers 2772, National Bureau of Economic Research, Inc.
    5. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, April.
    6. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantin A. Kholodilin, 2006. "Using the Dynamic Bi-Factor Model with Markov Switching to Predict the Cyclical Turns in the Large European Economies," Discussion Papers of DIW Berlin 554, DIW Berlin, German Institute for Economic Research.
    2. repec:ebl:ecbull:v:3:y:2002:i:5:p:1-15 is not listed on IDEAS
    3. Kholodilin Konstantin A., 2005. "Forecasting the German Cyclical Turning Points: Dynamic Bi-Factor Model with Markov Switching," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(6), pages 653-674, December.
    4. Konstantin A. Kholodilin, 2005. "Forecasting the Turns of German Business Cycle: Dynamic Bi-factor Model with Markov Switching," Discussion Papers of DIW Berlin 494, DIW Berlin, German Institute for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ebl:ecbull:v:3:y:2002:i:5:p:1-15 is not listed on IDEAS
    2. Konstantin A. KHOLODILIN, 2002. "Unobserved Leading and Coincident Common Factors in the Post-War U.S. Business Cycle," LIDAM Discussion Papers IRES 2002008, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    3. Konstantin A. KHOLODILIN, 2001. "Markov-Switching Common Dynamic Factor Model with Mixed-Frequency Data," LIDAM Discussion Papers IRES 2001020, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    4. Konstantin A. Kholodilin, 2006. "Using the Dynamic Bi-Factor Model with Markov Switching to Predict the Cyclical Turns in the Large European Economies," Discussion Papers of DIW Berlin 554, DIW Berlin, German Institute for Economic Research.
    5. Marcelle Chauvet & James D. Hamilton, 2006. "Dating Business Cycle Turning Points," Contributions to Economic Analysis, in: Nonlinear Time Series Analysis of Business Cycles, pages 1-54, Emerald Group Publishing Limited.
    6. Vincent, BODART & Konstantin, KHOLODILIN & Fati, SHADMAN-MEHTA, 2005. "Identifying and Forecasting the Turning Points of the Belgian Business Cycle with Regime-Switching and Logit Models," Discussion Papers (ECON - Département des Sciences Economiques) 2005006, Université catholique de Louvain, Département des Sciences Economiques.
    7. Konstantin A. Kholodilin, 2005. "Forecasting the Turns of German Business Cycle: Dynamic Bi-factor Model with Markov Switching," Discussion Papers of DIW Berlin 494, DIW Berlin, German Institute for Economic Research.
    8. Konstantin Kholodilin, 2003. "US composite economic indicator with nonlinear dynamics and the data subject to structural breaks," Applied Economics Letters, Taylor & Francis Journals, vol. 10(6), pages 363-372.
    9. Chang-Jin Kim & Chris Murray, 1999. "Permanent and Transitory Nature of Recessions," Discussion Papers in Economics at the University of Washington 0041, Department of Economics at the University of Washington.
    10. Leiva-Leon Danilo, 2014. "Real vs. nominal cycles: a multistate Markov-switching bi-factor approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 557-580, December.
    11. Harm Bandholz, 2005. "New Composite Leading Indicators for Hungary and Poland," ifo Working Paper Series 3, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    12. Akay, Ozgur (Ozzy) & Senyuz, Zeynep & Yoldas, Emre, 2013. "Hedge fund contagion and risk-adjusted returns: A Markov-switching dynamic factor approach," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 16-29.
    13. Cheng Jiang, 2018. "The Asymmetric Effects of Monetary Policy on Stock Market," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 8(03), pages 1-27, September.
    14. Michael T. Owyang & Jeremy Piger & Daniel Soques, 2022. "Contagious switching," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 415-432, March.
    15. Giancarlo Bruno & Edoardo Otranto, 2003. "Dating the Italian Business Cycle: A Comparison of Procedures," Econometrics 0312003, University Library of Munich, Germany.
    16. Michael Funke & Harm Bandholz, 2003. "In search of leading indicators of economic activity in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 277-297.
    17. Vincent, BODART & Konstantin A., KHOLODILIN & Fati, SHADMAN-MEHTA, 2003. "Dating and Forecasting the Belgian Business Cycle," LIDAM Discussion Papers IRES 2003018, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    18. Chinhui Juhn & Simon Potter & Marcelle Chauvet, 2002. "Markov switching in disaggregate unemployment rates," Empirical Economics, Springer, vol. 27(2), pages 205-232.
    19. Kholodilin Konstantin A., 2005. "Forecasting the German Cyclical Turning Points: Dynamic Bi-Factor Model with Markov Switching," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(6), pages 653-674, December.
    20. Chen, Shyh-Wei & Shen, Chung-Hua, 2006. "When Wall Street conflicts with Main Street--The divergent movements of Taiwan's leading indicators," International Journal of Forecasting, Elsevier, vol. 22(2), pages 317-339.
    21. van Os, Bram & van Dijk, Dick, 2024. "Accelerating peak dating in a dynamic factor Markov-switching model," International Journal of Forecasting, Elsevier, vol. 40(1), pages 313-323.

    More about this item

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-01c50001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.