IDEAS home Printed from https://ideas.repec.org/a/dug/journl/y2017i2p106-116.html
   My bibliography  Save this article

Naira-Dollar Exchange Rate Volatility Modeling Using Quadratic Moving Average Conditional Heteroscedasticity (QMACH)

Author

Listed:
  • Odunayo Magret Olarewaju

    (Durban University of Technology)

  • Timilehin John Olasehinde

    (Ekiti State University)

Abstract

This study investigates possible alternative modeling of Naira-Dollar exchange rate volatility in Nigeria. This paper compares the performance of the new model specification (QMACH) with the ARCHGARCH that are already in existence in volatility modeling literature. The paper makes use of the monthly data on Naira-Dollar exchange rates from 1991 to 2016 which was sourced from the Central Bank of Nigeria statistical bulletin. In order to realize the aim of this study, anewly proposed Quadratic Moving Average Conditional Heteroscedasticity (QMACH) model was employed to investigate the volatility of Naira-Dollar exchange rate. The ADF unit root test reveals that the Naira-Dollar exchange rate return isstationary and this permits the usage of Quadratic Moving Average Conditional Heteroscedasticity (QMACH) methodology. The empirical analysis indicates that Naira-Dollar exchange rate volatility indeed follows the QMACH movement just like it follows both ARCH and GARCH movement. In comparison with ARCH and GARCH modeling, QMACH outperforms both as shownthrough the loglikelihood statistics and the information criteria.

Suggested Citation

  • Odunayo Magret Olarewaju & Timilehin John Olasehinde, 2017. "Naira-Dollar Exchange Rate Volatility Modeling Using Quadratic Moving Average Conditional Heteroscedasticity (QMACH)," EuroEconomica, Danubius University of Galati, issue 2(36), pages 106-116, November.
  • Handle: RePEc:dug:journl:y:2017:i:2:p:106-116
    as

    Download full text from publisher

    File URL: http://journals.univ-danubius.ro/index.php/euroeconomica/article/view/4098/4278
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Ventosa, "undated". "A proposal for a new specification for a conditionally heteroskedastic variance model: the Quadratic Moving-Average Conditional Heteroskedasticity and an application to the D. Mark-U.S. dollar Exchang," UFAE and IAE Working Papers 513.02, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    2. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    3. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    5. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    2. Suhejla Hoti & Felix Chan & Michael McAleer, 2003. "Structure and Asymptotic Theory for Multivariate Asymmetric Volatility: Empirical Evidence for Country Risk Ratings," CIRJE F-Series CIRJE-F-203, CIRJE, Faculty of Economics, University of Tokyo.
    3. Sondre Hølleland & Hans Arnfinn Karlsen, 2020. "A Stationary Spatio‐Temporal GARCH Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 177-209, March.
    4. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    5. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1291-1320, October.
    6. Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
    7. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
    8. Hu, Michael Y. & Tsoukalas, Christos, 1999. "Combining conditional volatility forecasts using neural networks: an application to the EMS exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 9(4), pages 407-422, November.
    9. Hidalgo, Javier & Zaffaroni, Paolo, 2007. "A goodness-of-fit test for ARCH([infinity]) models," Journal of Econometrics, Elsevier, vol. 141(2), pages 973-1013, December.
    10. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2002. "Stationarity of stable power-GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 97-107, January.
    11. Ling, Shiqing & McAleer, Michael, 2002. "Stationarity and the existence of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 109-117, January.
    12. Stefan Richter & Weining Wang & Wei Biao Wu, 2018. "A supreme test for periodic explosive GARCH," Papers 1812.03475, arXiv.org.
    13. Stefan Richter & Weining Wang & Wei Biao Wu, 2023. "Testing for parameter change epochs in GARCH time series," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 467-491.
    14. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, November.
    15. Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," Working Papers in Economics 10/58, University of Canterbury, Department of Economics and Finance.
    16. Werge, Nicklas & Wintenberger, Olivier, 2022. "AdaVol: An Adaptive Recursive Volatility Prediction Method," Econometrics and Statistics, Elsevier, vol. 23(C), pages 19-35.
    17. Arup Bose & Kanchan Mukherjee, 2003. "Estimating The Arch Parameters By Solving Linear Equations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 127-136, March.
    18. Olivier Wintenberger, 2013. "Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
    19. Christian Gourieroux & Joanna Jasiak, 1999. "Nonlinear Innovations and Impulse Response," Working Papers 99-44, Center for Research in Economics and Statistics.
    20. Ping-Yu Chen & Chia-Lin Chang & Chi-Chung Chen & Michael McAleer, 2010. "Modeling the Effect of Oil Price on Global Fertilizer Prices," Working Papers in Economics 10/55, University of Canterbury, Department of Economics and Finance.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dug:journl:y:2017:i:2:p:106-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Florian Nuta (email available below). General contact details of provider: https://edirc.repec.org/data/fedanro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.