IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v38y2018i8.html
   My bibliography  Save this article

Evolution of fixed demographic heterogeneity from a game of stable coexistence

Author

Listed:
  • Stefano Giaimo

    (Max-Planck-Institut für Evolutionsbiologie)

  • Xiang-Yi Li

    (Universität Zürich)

  • Arne Traulsen

    (Max-Planck-Institut für Evolutionsbiologie)

  • Annette Baudisch

    (Syddansk Universitet)

Abstract

Background: Demographic heterogeneity refers to the observation that – within the same population – trajectories of survival and reproduction differ substantially between individuals. These differences have been found in both natural and captive populations. Models in ecology and evolution that incorporate demographic heterogeneity can improve both our understanding of the evolution of mortality curves and our population management abilities. Current explanations of the origin of demographic heterogeneity mostly revolve around interindividual differences that are either present at birth (fixed heterogeneity) or the result of stochasticity in life history realization (dynamic heterogeneity). Largely neglected remains the possibility that a form of fixed heterogeneity may evolve from interactions between behaviorally distinct individuals through their lifespan. Objective: We suggest one possible way in which heterogeneity in vital rates may evolve. Our approach assumes game theoretic interactions in the population. Methods: We combine population matrix models and game theory. We study a stable coexistence game between two types that are initially demographically homogeneous and analyze the effect of mutations that influence the trajectories of survival and reproduction. Results: The rise and fixation of mutations can make the population demographically heterogeneous, while the game can preserve the coexistence of different types in the population. Conclusions: Frequency-dependent selection can help to explain the evolution of demographic heterogeneity. Contribution: Frequency-dependent selection can maintain already existing demographic heterogeneity in a population without overlapping generations. Here, we show that this form of selection can also be involved in the origin of a form of fixed heterogeneity.

Suggested Citation

  • Stefano Giaimo & Xiang-Yi Li & Arne Traulsen & Annette Baudisch, 2018. "Evolution of fixed demographic heterogeneity from a game of stable coexistence," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 38(8), pages 197-226.
  • Handle: RePEc:dem:demres:v:38:y:2018:i:8
    DOI: 10.4054/DemRes.2018.38.8
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol38/8/38-8.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2018.38.8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    2. Plard, F. & Bonenfant, C. & Delorme, D. & Gaillard, J.M., 2012. "Modeling reproductive trajectories of roe deer females: Fixed or dynamic heterogeneity?," Theoretical Population Biology, Elsevier, vol. 82(4), pages 317-328.
    3. Weini Huang & Bernhard Haubold & Christoph Hauert & Arne Traulsen, 2012. "Emergence of stable polymorphisms driven by evolutionary games between mutants," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    4. Yann Le Cunff & Annette Baudisch & Khashayar Pakdaman, 2013. "How Evolving Heterogeneity Distributions of Resource Allocation Strategies Shape Mortality Patterns," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-14, January.
    5. Ross Cressman, 2003. "Evolutionary Dynamics and Extensive Form Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262033054, December.
    6. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaitanya Gokhale & Arne Traulsen, 2014. "Evolutionary Multiplayer Games," Dynamic Games and Applications, Springer, vol. 4(4), pages 468-488, December.
    2. Takuya Sekiguchi, 2023. "Fixation Probabilities of Strategies for Trimatrix Games and Their Applications to Triadic Conflict," Dynamic Games and Applications, Springer, vol. 13(3), pages 1005-1033, September.
    3. Bin Wu & Julián García & Christoph Hauert & Arne Traulsen, 2013. "Extrapolating Weak Selection in Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-7, December.
    4. Dhaker Kroumi, 2021. "Aspiration Can Promote Cooperation in Well-Mixed Populations As in Regular Graphs," Dynamic Games and Applications, Springer, vol. 11(2), pages 390-417, June.
    5. Gokhale, Chaitanya S. & Hauert, Christoph, 2016. "Eco-evolutionary dynamics of social dilemmas," Theoretical Population Biology, Elsevier, vol. 111(C), pages 28-42.
    6. Christian Hilbe & Moshe Hoffman & Martin A. Nowak, 2015. "Cooperate without Looking in a Non-Repeated Game," Games, MDPI, vol. 6(4), pages 1-15, September.
    7. Takuya Sekiguchi & Hisashi Ohtsuki, 2017. "Fixation Probabilities of Strategies for Bimatrix Games in Finite Populations," Dynamic Games and Applications, Springer, vol. 7(1), pages 93-111, March.
    8. Coste, Christophe F.D. & Austerlitz, Frédéric & Pavard, Samuel, 2017. "Trait level analysis of multitrait population projection matrices," Theoretical Population Biology, Elsevier, vol. 116(C), pages 47-58.
    9. Jiawei Li & Graham Kendall, 2015. "On Nash Equilibrium and Evolutionarily Stable States That Are Not Characterised by the Folk Theorem," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-9, August.
    10. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    11. Ozgur Aydogmus & Erkan Gürpinar, 2022. "Science, Technology and Institutional Change in Knowledge Production: An Evolutionary Game Theoretic Framework," Dynamic Games and Applications, Springer, vol. 12(4), pages 1163-1188, December.
    12. Bagdonavicius, Vilijandas & Nikulin, Mikhail, 2000. "On goodness-of-fit for the linear transformation and frailty models," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 177-188, April.
    13. Feehan, Dennis & Wrigley-Field, Elizabeth, 2020. "How do populations aggregate?," SocArXiv 2fkw3, Center for Open Science.
    14. Filipe Costa Souza & Wilton Bernardino & Silvio C. Patricio, 2024. "How life-table right-censoring affected the Brazilian social security factor: an application of the gamma-Gompertz-Makeham model," Journal of Population Research, Springer, vol. 41(3), pages 1-38, September.
    15. Konrad, Kai A. & Morath, Florian, 2020. "The Volunteer’s Dilemma in Finite Populations," CEPR Discussion Papers 15536, C.E.P.R. Discussion Papers.
    16. M. Kleshnina & K. Kaveh & K. Chatterjee, 2020. "The role of behavioural plasticity in finite vs infinite populations," Papers 2009.13160, arXiv.org.
    17. K. Motarjem & M. Mohammadzadeh & A. Abyar, 2020. "Geostatistical survival model with Gaussian random effect," Statistical Papers, Springer, vol. 61(1), pages 85-107, February.
    18. Martina Testori & Hedwig Eisenbarth & Rebecca B Hoyle, 2022. "Selfish risk-seeking can provide an evolutionary advantage in a conditional public goods game," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-18, January.
    19. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    20. Huang, Keke & Liu, Yishun & Zhang, Yichi & Yang, Chunhua & Wang, Zhen, 2018. "Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 234-240.

    More about this item

    Keywords

    aging; evolution; matrix population models; game theory; demographic heterogeneity;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:38:y:2018:i:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.