IDEAS home Printed from https://ideas.repec.org/a/dah/aeqsjb/v135_y2015_i3_q3_p355-388.html
   My bibliography  Save this article

Reducing the Need for Heuristic Rules - An Iterative Algorithm for Imputing the Education Variable in SIAB

Author

Listed:
  • Christian Hutter
  • Joachim Möller
  • Marion Penninger

Abstract

The article proposes an iterative imputation algorithm based on the EM-Algorithm and employs it to improve the education variable in the Sample of Integrated Labour Market Biographies (SIAB), an administrative panel data set provided by the Institute for Employment Research (IAB). Since the education variable in SIAB is reported for statistical reasons only, it suffers from frequent inconsistent reports and a high and increasing share of missing values. Existing imputation procedures are mainly based on heuristic rules and there is no guidance of which procedure outperforms the others. Our iterative imputation algorithm reduces the role of heuristic decision rules and estimates the most likely educational or vocational status using information based on the employee’s whole employment biography. The resulting imputed education variable does not contain inconsistent reports. Furthermore, the share of missing spells is reduced by 87 percent. After imputation, the education variable shows better congruence to independent survey data (ALWA). The article focuses on the results for a (large) subgroup of SIAB (West German employees born after 1960 with a single main job). However, robustness checks reveal that the final education variable is stable with respect to different samples, termination criteria and control variables. Hence, we conclude that our imputation algorithm can serve as a blueprint for further expansions. / Der vorliegende Artikel nutzt ein iteratives Imputations-Verfahren, das auf dem EMAlgorithmus basiert, zur Korrektur der Bildungsvariable in der Stichprobe der Integrierten Arbeitsmarktbiographien (SIAB), einem administrativen Paneldatensatz des Instituts für Arbeitsmarkt- und Berufsforschung (IAB). Die Bildungsvariable enthält einen großen Anteil an Spells, für die entweder gar kein Bildungsstatus vorliegt oder die als inkonsistent gelten müssen. Bisherige Imputationsverfahren sind größtenteils heuristischer Natur und es ist unklar, welches der Verfahren den anderen vorzuziehen ist. Unser iteratives Imputationsverfahren reduziert den Einsatz von heuristischen Entscheidungsregeln und schätzt den wahrscheinlichsten Bildungsstatus. Grundlage für die Schätzungen sind erklärende Variablen, die während des gesamten Auftretens eines Beschäftigten im Datensatz gesammelt werden können. Die resultierende imputierte Bildungsvariable enthält keine inkonsistenten Bildungsverläufe mehr. Zudem verringert sich die Anzahl der Spells mit fehlenden Bildungsangaben um ca. 87 Prozent. Der Artikel setzt den Fokus auf die Ergebnisse für eine (große) Teilgruppe von SIAB (westdeutsche Beschäftigte, die nach 1960 geboren sind und nicht mehrfachbeschäftigt sind). Da Robustheitschecks eine zuverlässig hohe Stabilität der korrigierten Bildungsvariable bezüglich einer Variation der Stichprobe, der Abbruchkriterien und der Kontrollvariablen zeigen, kann unser vorgeschlagener Imputationsalgorithmus mit wenigen Modifikationen auch auf andere Untergruppen von SIAB ausgedehnt werden.

Suggested Citation

  • Christian Hutter & Joachim Möller & Marion Penninger, 2015. "Reducing the Need for Heuristic Rules - An Iterative Algorithm for Imputing the Education Variable in SIAB," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 135(3), pages 355-388.
  • Handle: RePEc:dah:aeqsjb:v135_y2015_i3_q3_p355-388
    DOI: 10.3790/schm.135.3.355
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.3790/schm.135.3.355
    Download Restriction: no

    File URL: https://libkey.io/10.3790/schm.135.3.355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephan L. Thomsen & Johannes Trunzer, 2024. "Did the Bologna Process Challenge the German Apprenticeship System? Evidence from a Natural Experiment," Journal of Human Capital, University of Chicago Press, vol. 18(4), pages 635-667.
    2. Wolfgang Dauth & Johann Eppelsheimer, 2020. "Preparing the sample of integrated labour market biographies (SIAB) for scientific analysis: a guide," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 54(1), pages 1-14, December.

    More about this item

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dah:aeqsjb:v135_y2015_i3_q3_p355-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: E-Publishing-Team (email available below). General contact details of provider: https://www.duncker-humblot.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.