IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v23y2015i01p92-112_01.html
   My bibliography  Save this article

Semi-parametric Selection Models for Potentially Non-ignorable Attrition in Panel Studies with Refreshment Samples

Author

Listed:
  • Si, Yajuan
  • Reiter, Jerome P.
  • Hillygus, D. Sunshine

Abstract

Panel studies typically suffer from attrition. Ignoring the attrition can result in biased inferences if the missing data are systematically related to outcomes of interest. Unfortunately, panel data alone cannot inform the extent of bias due to attrition. Many panel studies also include refreshment samples, which are data collected from a random sample of new individuals during the later waves of the panel. Refreshment samples offer information that can be utilized to correct for biases induced by non-ignorable attrition while reducing reliance on strong assumptions about the attrition process. We present a Bayesian approach to handle attrition in two-wave panels with one refreshment sample and many categorical survey variables. The approach includes (1) an additive non-ignorable selection model for the attrition process; and (2) a Dirichlet process mixture of multinomial distributions for the categorical survey variables. We present Markov chain Monte Carlo algorithms for sampling from the posterior distribution of model parameters and missing data. We apply the model to correct attrition bias in an analysis of data from the 2007–08 Associated Press/Yahoo News election panel study.

Suggested Citation

  • Si, Yajuan & Reiter, Jerome P. & Hillygus, D. Sunshine, 2015. "Semi-parametric Selection Models for Potentially Non-ignorable Attrition in Panel Studies with Refreshment Samples," Political Analysis, Cambridge University Press, vol. 23(1), pages 92-112, January.
  • Handle: RePEc:cup:polals:v:23:y:2015:i:01:p:92-112_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1047198700011621/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heng Chen & Marie-Hélène Felt & Kim P. Huynh, 2017. "Retail payment innovations and cash usage: accounting for attrition by using refreshment samples," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 503-530, February.
    2. Takahiro Hoshino & Keisuke Takahata, 2018. "Identification of heterogeneous treatment effects as a function of potential untreated outcome under the nonignorable assignment condition," Keio-IES Discussion Paper Series 2018-005, Institute for Economics Studies, Keio University.
    3. Grigory Franguridi & Lidia Kosenkova, 2024. "Closed-form estimation and inference for panels with attrition and refreshment samples," Papers 2410.11263, arXiv.org.
    4. Yajuan Si & Roderick J. A. Little & Ya Mo & Nell Sedransk, 2023. "A Case Study of Nonresponse Bias Analysis in Educational Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 48(3), pages 271-295, June.
    5. Olanrewaju Akande & Gabriel Madson & D. Sunshine Hillygus & Jerome P. Reiter, 2021. "Leveraging auxiliary information on marginal distributions in nonignorable models for item and unit nonresponse," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 643-662, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:23:y:2015:i:01:p:92-112_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.