IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v21y2013i03p298-313_01.html
   My bibliography  Save this article

Validating Estimates of Latent Traits from Textual Data Using Human Judgment as a Benchmark

Author

Listed:
  • Lowe, Will
  • Benoit, Kenneth

Abstract

Automated and statistical methods for estimating latent political traits and classes from textual data hold great promise, because virtually every political act involves the production of text. Statistical models of natural language features, however, are heavily laden with unrealistic assumptions about the process that generates these data, including the stochastic process of text generation, the functional link between political variables and observed text, and the nature of the variables (and dimensions) on which observed text should be conditioned. While acknowledging statistical models of latent traits to be “wrong,” political scientists nonetheless treat their results as sufficiently valid to be useful. In this article, we address the issue of substantive validity in the face of potential model failure, in the context of unsupervised scaling methods of latent traits. We critically examine one popular parametric measurement model of latent traits for text and then compare its results to systematic human judgments of the texts as a benchmark for validity.

Suggested Citation

  • Lowe, Will & Benoit, Kenneth, 2013. "Validating Estimates of Latent Traits from Textual Data Using Human Judgment as a Benchmark," Political Analysis, Cambridge University Press, vol. 21(3), pages 298-313, July.
  • Handle: RePEc:cup:polals:v:21:y:2013:i:03:p:298-313_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1047198700013413/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gloria Gennaro & Elliott Ash, 2022. "Emotion and Reason in Political Language," The Economic Journal, Royal Economic Society, vol. 132(643), pages 1037-1059.
    2. Adriana Bunea & Raimondas Ibenskas, 2015. "Quantitative text analysis and the study of EU lobbying and interest groups," European Union Politics, , vol. 16(3), pages 429-455, September.
    3. Sami Diaf & Jörg Döpke & Ulrich Fritsche & Ida Rockenbach, 2020. "Sharks and minnows in a shoal of words: Measuring latent ideological positions of German economic research institutes based on text mining techniques," Macroeconomics and Finance Series 202001, University of Hamburg, Department of Socioeconomics.
    4. Anustubh Agnihotri & Rahul Verma, 2019. "Content Analysis of Digital Text and Its Applications," Studies in Indian Politics, , vol. 7(1), pages 83-89, June.
    5. Diaf, Sami & Döpke, Jörg & Fritsche, Ulrich & Rockenbach, Ida, 2022. "Sharks and minnows in a shoal of words: Measuring latent ideological positions based on text mining techniques," European Journal of Political Economy, Elsevier, vol. 75(C).
    6. Martin Haselmayer & Marcelo Jenny, 2017. "Sentiment analysis of political communication: combining a dictionary approach with crowdcoding," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2623-2646, November.
    7. Gavin Abercrombie & Riza Batista-Navarro, 2020. "Sentiment and position-taking analysis of parliamentary debates: a systematic literature review," Journal of Computational Social Science, Springer, vol. 3(1), pages 245-270, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:21:y:2013:i:03:p:298-313_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.